hi professionals! for an implicit equation(name it "y") of lambda and beta-bar which is plotted with "ezplot" command, i know it is possible that by a root finding algorithm like "bisection method", i can find solutions of beta-bar for each increment of lambda. but how to build such an algorithm to obtain the lines correctly. (i think solutions of beta-bar should lie in an n*m matrix) would you in general show the methods of plotting such problem? thanks. one of my reasons is discontinuity of "ezplot" command for my equation. ok here is my pic:
or
Free Image Hosting
and my code (in short):
h=ezplot('f1',[0.8,1.8,0.7,1.0]);
and in another m.file
function y=f1(lambda,betab)
n1=1.5; n2=1; z0=120*pi;
d1=1; d2=1; a=1;
k0=2*pi/lambda;
u= sqrt(n1^2-betab^2);
wb= sqrt(n2^2-betab^2);
uu=k0*u*d1;
wwb=k0*wb*d2 ;
z1=z0/u; z1_b=z1/z0;
a0_b=tan(wwb)/u+tan(uu)/wb;
b0_b=(1/u^2-1/wb^2)*tan(uu)*tan(wwb);
c0_b=1/(u*wb)*(tan(uu)/u+tan(wwb)/wb);
uu0= k0*u*a; m=0;
y=(a0_b*z1_b^2+c0_b)+(a0_b*z1_b^2-c0_b)*...
cos(2*uu0+m*pi)+b0_b*z1_b*sin(2*uu0+m*pi);
end
fzero cant find roots; it says "Function value must be real and finite". anyway, is it possible to eliminate discontinuity and only plot real zeros of y? heretofore,for another function (namely fTE), which is :
function y=fTE(lambda,betab,s)
m=s;
n1=1.5; n2=1;
d1=1; d2=1; a=1;
z0=120*pi;
k0=2*pi/lambda;
u = sqrt(n1^2-betab^2);
w = sqrt(betab^2-n2^2);
U = k0*u*d1;
W = k0*w*d2 ;
z1 = z0/u; z1_b = z1/z0;
a0_b = tanh(W)/u-tan(U)/w;
b0_b = (1/u^2+1/w^2)*tan(U)*tanh(W);
c0_b = -(tan(U)/u+tanh(W)/w)/(u*w);
U0 = k0*u*a;
y = (a0_b*z1_b^2+c0_b)+(a0_b*z1_b^2-c0_b)*cos(2*U0+m*pi)...
+ b0_b*z1_b*sin(2*U0+m*pi);
end
i'd plotted real zeros of "y" by these codes:
s=0; % s=0 for even modes and s=1 for odd modes.
lmin=0.8; lmax=1.8;
bmin=1; bmax=1.5;
lam=linspace(lmin,lmax,1000);
for n=1:length(lam)
increment=0.001; tolerence=1e-14; xstart=bmax-increment;
x=xstart;
dx=increment;
m=0;
while x > bmin
while dx/x >= tolerence
if fTE(lam(n),x,s)*fTE(lam(n),x-dx,s)<0
dx=dx/2;
else
x=x-dx;
end
end
if abs(real(fTE(lam(n),x,s))) < 1e-6 %because of discontinuity some answers are not correct.%
m=m+1;
r(n,m)=x;
end
dx=increment;
x=0.99*x;
end
end
figure
hold on,plot(lam,r(:,1),'k'),plot(lam,r(:,2),'c'),plot(lam,r(:,3),'m'),
xlim([lmin,lmax]);ylim([1,1.5]),
xlabel('\lambda(\mum)'),ylabel('\beta-bar')
you see i use matrix to save data for this plot.
![alt text][2] because here lines start from left(axis) to rigth. but if the first line(upper) starts someplace from up to rigth(for the first figure and f1 function), then i dont know how to use matrix. lets improve this method.
[2]:
Free Image Hosting