Hi Guys,
I'm using an ARM Cortex-A8 based processor called as i.MX515. There is linux Ubuntu 9.10 distribution. I'm running a very big application written in C and I'm making use of gettimeofday();
functions to measure the time my application takes.
main()
{
gettimeofday(start);
....
....
....
gettimeofday(end);
}
This method was sufficient to look at what blocks of my application was taking what amount of time. But, now that, I'm trying to optimize my code very throughly, with the gettimeofday() method of calculating time, I see a lot of fluctuation between successive runs (Run before and after my optimizations), so I'm not able to determine the actual execution times, hence the impact of my improvements.
Can anyone suggest me what I should do?
If by accessing the cycle counter (Idea suggested on ARM website for Cortex-M3) can anyone point me to some code which gives me the steps I have to follow to access the timer registers on Cortex-A8?
If this method is not very accurate then please suggest some alternatives.
Thanks
Follow ups
Follow up 1: Wrote the following program on Code Sorcery, the executable was generated which when I tried running on the board, I got - Illegal instruction message :(
static inline unsigned int get_cyclecount (void)
{
unsigned int value;
// Read CCNT Register
asm volatile ("MRC p15, 0, %0, c9, c13, 0\t\n": "=r"(value));
return value;
}
static inline void init_perfcounters (int32_t do_reset, int32_t enable_divider)
{
// in general enable all counters (including cycle counter)
int32_t value = 1;
// peform reset:
if (do_reset)
{
value |= 2; // reset all counters to zero.
value |= 4; // reset cycle counter to zero.
}
if (enable_divider)
value |= 8; // enable "by 64" divider for CCNT.
value |= 16;
// program the performance-counter control-register:
asm volatile ("MCR p15, 0, %0, c9, c12, 0\t\n" :: "r"(value));
// enable all counters:
asm volatile ("MCR p15, 0, %0, c9, c12, 1\t\n" :: "r"(0x8000000f));
// clear overflows:
asm volatile ("MCR p15, 0, %0, c9, c12, 3\t\n" :: "r"(0x8000000f));
}
int main()
{
/* enable user-mode access to the performance counter*/
asm ("MCR p15, 0, %0, C9, C14, 0\n\t" :: "r"(1));
/* disable counter overflow interrupts (just in case)*/
asm ("MCR p15, 0, %0, C9, C14, 2\n\t" :: "r"(0x8000000f));
init_perfcounters (1, 0);
// measure the counting overhead:
unsigned int overhead = get_cyclecount();
overhead = get_cyclecount() - overhead;
unsigned int t = get_cyclecount();
// do some stuff here..
printf("\nHello World!!");
t = get_cyclecount() - t;
printf ("function took exactly %d cycles (including function call) ", t - overhead);
get_cyclecount();
return 0;
}
Follow up 2: I had written to Freescale for support and they have sent me back the following reply and a program (I did not quite understand much from it)
Here is what we can help you with right now: I am sending you attach an example of code, that sends an stream using the UART, from what your code, it seems that you are not init correctly the MPU.
(hash)include <stdio.h>
(hash)include <stdlib.h>
(hash)define BIT13 0x02000
(hash)define R32 volatile unsigned long *
(hash)define R16 volatile unsigned short *
(hash)define R8 volatile unsigned char *
(hash)define reg32_UART1_USR1 (*(R32)(0x73FBC094))
(hash)define reg32_UART1_UTXD (*(R32)(0x73FBC040))
(hash)define reg16_WMCR (*(R16)(0x73F98008))
(hash)define reg16_WSR (*(R16)(0x73F98002))
(hash)define AIPS_TZ1_BASE_ADDR 0x70000000
(hash)define IOMUXC_BASE_ADDR AIPS_TZ1_BASE_ADDR+0x03FA8000
typedef unsigned long U32;
typedef unsigned short U16;
typedef unsigned char U8;
void serv_WDOG()
{
reg16_WSR = 0x5555;
reg16_WSR = 0xAAAA;
}
void outbyte(char ch)
{
while( !(reg32_UART1_USR1 & BIT13) );
reg32_UART1_UTXD = ch ;
}
void _init()
{
}
void pause(int time)
{
int i;
for ( i=0 ; i < time ; i++);
}
void led()
{
//Write to Data register [DR]
*(R32)(0x73F88000) = 0x00000040; // 1 --> GPIO 2_6
pause(500000);
*(R32)(0x73F88000) = 0x00000000; // 0 --> GPIO 2_6
pause(500000);
}
void init_port_for_led()
{
//GPIO 2_6 [73F8_8000] EIM_D22 (AC11) DIAG_LED_GPIO
//ALT1 mode
//IOMUXC_SW_MUX_CTL_PAD_EIM_D22 [+0x0074]
//MUX_MODE [2:0] = 001: Select mux mode: ALT1 mux port: GPIO[6] of instance: gpio2.
// IOMUXC control for GPIO2_6
*(R32)(IOMUXC_BASE_ADDR + 0x74) = 0x00000001;
//Write to DIR register [DIR]
*(R32)(0x73F88004) = 0x00000040; // 1 : GPIO 2_6 - output
*(R32)(0x83FDA090) = 0x00003001;
*(R32)(0x83FDA090) = 0x00000007;
}
int main ()
{
int k = 0x12345678 ;
reg16_WMCR = 0 ; // disable watchdog
init_port_for_led() ;
while(1)
{
printf("Hello word %x\n\r", k ) ;
serv_WDOG() ;
led() ;
}
return(1) ;
}