The first question you have presumably already answered is "does this have to be precalculated?". Is there some algorithm you can use that will make it possible to calculate the required values on demand to avoid this problem? Assuming not...
That is only 2.6GB of data - on a 64 bit processor you'll have no problem with a tiny amount of data like that. But if you're running on a 5 year old computer with a 10 year old OS then it's a non-starter, as that much data will immediately fill the available working set for a 32-bit application.
One approach that would be obvious in C++ would be to use a memory-mapped file. This makes the data appear to your application as if it is in RAM, but the OS actually pages bits of it in only as it is accessed, so very little real RAM is used. I'm not sure if you could do this directly from C#, but you could easily enough do it in C++/CLI and then access it from C#.
Alternatively, assuming the question "do you need all of it in RAM simultaneously" has been answered with "yes", then you can't go for any kind of virtualisation approach, so...
Loading in multiple threads won't help - you are going to be I/O bound, so you'll have n threads waiting for data (and asking the hard drive to seek between the chunks they are reading) rather than one thread waiitng for data (which is being read sequentially, with no seeks). So threads will just cause more seeking and thus may well make it slower. (The only case where splitting the data up might help is if you split it to different physical disks so different chunks of data can be read in parallel - don't do this in software; buy a RAID array)
The only place where multithreading may help is to make the load happen in the background while the rest of your application starts up, and allow the user to start using the portion of the data that is already loaded while the rest of the buffer fills, so the user (hopefully) doesn't have to wait much while the data is loading.
So, you're back to loading the data into one massive array in a single thread...
However, you may be able to speed this up considerably by compressing the data. There are a couple of general approaches woth considering:
If you know something about the data, you may be able to invent an encoding scheme that makes the data smaller (and therefore faster to load). e.g. if the values tend to be close to each other (e.g. imagine the data points that describe a sine wave - the values range from very small to very large, but each value is only ever a small increment from the last) you may be able to represent the 'deltas' in a float without losing the accuracy of the original double values, halving the data size. If there is any symmetry or repetition to the data you may be able to exploit it (e.g. imagine storing all the positions to describe a whole circle, versus storing one quadrant and using a bit of trivial and fast maths to reflect it 4 times - an easy way to quarter the amount of data I/O). Any reduction in data size would give a corresponding reduction in load time. In addition, many of these schemes would allow the data to remain "encoded" in RAM, so you'd use far less RAM but still be able to quickly fetch the data when it was needed.
Alternatively, you can very easily wrap your stream with a generic compression algorithm such as Deflate. This may not work, but usually the cost of decompressing the data on the CPU is less than the I/O time that you save by loading less source data, so the net result is that it loads significantly faster. And of course, save a load of disk space too.