I really want to use SimpleDB, but I worry that without real locking and transactions the entire system is fatally flawed. I understand that for high-read/low-write apps it makes sense, since eventually the system becomes consistent, but what about that time in between? Seems like the right query in an inconsistent db would perpetuate havoc throughout the entire database in a way that's very hard to track down. Hopefully I'm just being a worry wart...
views:
463answers:
2This is the pretty classic battle between consistency and scalability and - to some extent - availability. Some data doesn't always need to be that consistent. For instance, look at digg.com and the number of diggs against a story. There's a good chance that value is duplicated in the "digg" record rather than forcing the DB to do a join against the "user_digg" table. Does it matter if that number isn't perfectly accurate? Probably not. Then using something like SimpleDB might be a good fit. However if you are writing a banking system, you should probably value consistency above all else. :)
Unless you know from day 1 that you have to deal with massive scale, I would stick to simple more conventional systems like RDBMS. If you are working somewhere with a reasonable business model, you will hopefully see a big spike in revenue if there's a big spike in traffic. Then you can use that money to help solving the scaling problems. Scaling is hard and scaling is hard to predict. Most of the scaling problems that hurt you will be ones that you never expect.
I would much rather get a site off the ground and spend a few weeks fixing scale issues when traffic picks up then spend so much time worrying about scale that we never make it to production because we run out of money. :)
Assuming you're talking about this SimpleDB, you're not being a worrywart; there are real reasons not to use it as a real world DBMS.
The properties that you get from transaction support in a DBMS can be abbreviated by the acronym "A.C.I.D.": Atomicity, Consistency, Isolation, and Durability. The A and D have mostly to do with system crashes, and the C and I have to do with regular operation. They're all things people totally take for granted when working with commercial databases, so if you work with a database that doesn't have one or more of them, you might be in for any number of nasty surprises.
Atomicity: Any transaction will either complete fully or not at all (i.e. it will either commit or abort cleanly). This applies to single statements (like "UPDATE table ...") as well as longer, more complicated transactions. If you don't have this, then anything that goes wrong (like, the disk getting full, the computer crashing, etc.) might leave something half-done. In other words, you can't ever rely on the DBMS to really do the things you tell it to, because any number of real-world problems can get in the way, and even a simple UPDATE statement might get partially completed.
Consistency: Any rules you've set up about the database will always be enforced. Like, if you have a rule that says A always equals B, then nothing anybody does to the database system can break that rule - it'll fail any operation that tries. This isn't quite as important if all your code is perfect ... but really, when is that ever the case? Plus, if you're missing this safety net, things get really yucky when you lose ...
Isolation: Any actions taken on the database will execute as if they happened serially (one at a time), even if in reality they're happening concurrently (interleaved with each other). If more than one user is going to hit this database at the same time, and you don't have this, then things you can't even dream up will go wrong; even atomic statements can interact with each other in unforeseen ways and screw things up.
Durability: If you lose power or the software crashes, what happens to database transactions that were in progress? If you have durability, the answer is "nothing - they're all safe". Databases do this by using something called "Undo / Redo Logging", where every little thing you do to the database is first logged (typically on a separate disk for safety) in a way such that you can reconstruct the current state after a failure. Without that, the other properties above are sort of useless, because you can never be 100% sure that things will stay consistent after a crash.
Do any of these things matter to you? The answer has everything to do with the types of transactions you're doing, and what guarantees you want in a failure situation. There may well be cases (like a read-only database) where you don't need these, but as soon as you start doing anything non-trivial, and something bad happens, you'll wish you had 'em. Maybe it's OK for you to just revert to a backup anytime something unexpected happens, but my guess is that it isn't.
Also note that dropping all of these protections doesn't make it a given that your database will perform better; in fact, it's probably the opposite. That's because real-world DBMS software also has tons of code to optimize query performance. So, if you write a query that joins 6 tables on SimpleDB, don't assume that it'll figure out the optimal way to run that query - you might end up waiting hours for it to complete, when a commercial DBMS could use an indexed hash join and get it in .5 seconds. There are a zillion little tricks that you can do to optimize query performance, and believe me, you'll really miss them when they're gone.
None of this is meant as a knock on SimpleDB; take it from the author of the software: "Although it is a great teaching tool, I can't imagine that anyone would want to use it for anything else."