I need an SQL guru to help me speed up my query.
I have 2 tables, quantities and prices. quantities records a quantity value between 2 timestamps, 15 minutes apart. prices records a price for a given timestamp, for a given price type and there is a price 5 record for every 5 minutes.
I need 2 work out the total price for each period, e.g. hour or day, between two timestamps. This is calculated by the sum of the (quantity multiplied by the average of the 3 prices in the 15 minute quantity window) in each period.
For example, let's say I want to see the total price each hour for 1 day. The total price value in each row in the result set is the sum of the total prices for each of the four 15 minute periods in that hour. And the total price for each 15 minute period is calculated by multiplying the quantity value in that period by the average of the 3 prices (one for each 5 minutes) in that quantity's period.
Here's the query I'm using, and the results:
SELECT
MIN( `quantities`.`start_timestamp` ) AS `start`,
MAX( `quantities`.`end_timestamp` ) AS `end`,
SUM( `quantities`.`quantity` * (
SELECT AVG( `prices`.`price` )
FROM `prices`
WHERE `prices`.`timestamp` >= `quantities`.`start_timestamp`
AND `prices`.`timestamp` < `quantities`.`end_timestamp`
AND `prices`.`type_id` = 1
) ) AS total
FROM `quantities`
WHERE `quantities`.`start_timestamp` >= '2010-07-01 00:00:00'
AND `quantities`.`start_timestamp` < '2010-07-02 00:00:00'
GROUP BY HOUR( `quantities`.`start_timestamp` );
+---------------------+---------------------+----------+
| start | end | total |
+---------------------+---------------------+----------+
| 2010-07-01 00:00:00 | 2010-07-01 01:00:00 | 0.677733 |
| 2010-07-01 01:00:00 | 2010-07-01 02:00:00 | 0.749133 |
| 2010-07-01 02:00:00 | 2010-07-01 03:00:00 | 0.835467 |
| 2010-07-01 03:00:00 | 2010-07-01 04:00:00 | 0.692233 |
| 2010-07-01 04:00:00 | 2010-07-01 05:00:00 | 0.389533 |
| 2010-07-01 05:00:00 | 2010-07-01 06:00:00 | 0.335300 |
| 2010-07-01 06:00:00 | 2010-07-01 07:00:00 | 1.231467 |
| 2010-07-01 07:00:00 | 2010-07-01 08:00:00 | 0.352800 |
| 2010-07-01 08:00:00 | 2010-07-01 09:00:00 | 1.447200 |
| 2010-07-01 09:00:00 | 2010-07-01 10:00:00 | 0.756733 |
| 2010-07-01 10:00:00 | 2010-07-01 11:00:00 | 0.599467 |
| 2010-07-01 11:00:00 | 2010-07-01 12:00:00 | 1.056467 |
| 2010-07-01 12:00:00 | 2010-07-01 13:00:00 | 1.252600 |
| 2010-07-01 13:00:00 | 2010-07-01 14:00:00 | 1.285567 |
| 2010-07-01 14:00:00 | 2010-07-01 15:00:00 | 0.442933 |
| 2010-07-01 15:00:00 | 2010-07-01 16:00:00 | 0.692567 |
| 2010-07-01 16:00:00 | 2010-07-01 17:00:00 | 1.281067 |
| 2010-07-01 17:00:00 | 2010-07-01 18:00:00 | 0.652033 |
| 2010-07-01 18:00:00 | 2010-07-01 19:00:00 | 1.721900 |
| 2010-07-01 19:00:00 | 2010-07-01 20:00:00 | 1.362400 |
| 2010-07-01 20:00:00 | 2010-07-01 21:00:00 | 1.099300 |
| 2010-07-01 21:00:00 | 2010-07-01 22:00:00 | 0.646267 |
| 2010-07-01 22:00:00 | 2010-07-01 23:00:00 | 0.873100 |
| 2010-07-01 23:00:00 | 2010-07-02 00:00:00 | 0.546533 |
+---------------------+---------------------+----------+
24 rows in set (5.16 sec)
I need the query to run a lot faster than this, and would have though it would be possible. Here's the results from EXPLAIN EXTENDED ...
+----+--------------------+------------+-------+-------------------+-----------------+---------+-------+-------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+------------+-------+-------------------+-----------------+---------+-------+-------+----------------------------------------------+
| 1 | PRIMARY | quantities | range | start_timestamp | start_timestamp | 8 | NULL | 89 | Using where; Using temporary; Using filesort |
| 2 | DEPENDENT SUBQUERY | prices | ref | timestamp,type_id | type_id | 4 | const | 22930 | Using where |
+----+--------------------+------------+-------+-------------------+-----------------+---------+-------+-------+----------------------------------------------+
2 rows in set, 3 warnings (0.00 sec)
I noticed the dependent sub query is not using the timestamp field in the key and the query is scanning loads of rows.
Can anyone help me get this running a hell of a lot faster?
Here are the SQL statements required to create the schema and fill it with a lot of data (2 months worth)
# Create prices table
CREATE TABLE `prices` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`timestamp` datetime NOT NULL,
`type_id` int(11) NOT NULL,
`price` float(8,2) NOT NULL,
PRIMARY KEY (`id`),
KEY `timestamp` (`timestamp`),
KEY `type_id` (`type_id`)
) ENGINE=MyISAM;
# Create quantities table
CREATE TABLE `quantities` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`start_timestamp` datetime NOT NULL,
`end_timestamp` datetime NOT NULL,
`quantity` float(7,2) NOT NULL,
PRIMARY KEY (`id`),
KEY `start_timestamp` (`start_timestamp`),
KEY `end_timestamp` (`end_timestamp`)
) ENGINE=MyISAM;
# Insert first 2 rows into prices, one for each of 2 types, starting 64 days ago
INSERT INTO `prices` (`id`, `timestamp`, `type_id`, `price`) VALUES
(NULL, DATE_SUB(CURDATE(), INTERVAL 64 DAY), '1', RAND()),
(NULL, DATE_SUB(CURDATE(), INTERVAL 64 DAY), '2', RAND());
# Fill the prices table with a record for each type, for every 5 minutes, for the next 64 days
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 32 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 16 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 8 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 4 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 2 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 1 DAY), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 12 HOUR), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 6 HOUR), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 3 HOUR), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 90 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 45 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 20 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 10 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_ADD(`timestamp`, INTERVAL 5 MINUTE), `type_id`, RAND() FROM prices;
INSERT INTO prices (`timestamp`, `type_id`, `price`) SELECT DATE_SUB(`timestamp`, INTERVAL 5 MINUTE), `type_id`, RAND() FROM prices WHERE MOD( (TIME_TO_SEC( `timestamp`) - TIME_TO_SEC(CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00')) ), 45 *60 ) = 0 AND `timestamp` > CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00');
# Insert first row into quantities, start timestamp is 64 days ago, end timestamp is start timestamp plus 15 minutes
INSERT INTO `quantities` (`id`, `start_timestamp`, `end_timestamp`, `quantity`) VALUES (NULL, DATE_SUB(CURDATE(), INTERVAL 64 DAY), DATE_SUB(CURDATE(), INTERVAL '63 23:45' DAY_MINUTE), RAND());
# Fill the quantities table with a record for each 15 minute period for the next 64 days
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 32 DAY), DATE_ADD(`end_timestamp`, INTERVAL 32 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 16 DAY), DATE_ADD(`end_timestamp`, INTERVAL 16 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 8 DAY), DATE_ADD(`end_timestamp`, INTERVAL 8 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 4 DAY), DATE_ADD(`end_timestamp`, INTERVAL 4 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 2 DAY), DATE_ADD(`end_timestamp`, INTERVAL 2 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 1 DAY), DATE_ADD(`end_timestamp`, INTERVAL 1 DAY), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 12 HOUR), DATE_ADD(`end_timestamp`, INTERVAL 12 HOUR), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 6 HOUR), DATE_ADD(`end_timestamp`, INTERVAL 6 HOUR), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 3 HOUR), DATE_ADD(`end_timestamp`, INTERVAL 3 HOUR), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 90 MINUTE), DATE_ADD(`end_timestamp`, INTERVAL 90 MINUTE), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 45 MINUTE), DATE_ADD(`end_timestamp`, INTERVAL 45 MINUTE), RAND() FROM quantities;
INSERT INTO `quantities` (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_ADD(`start_timestamp`, INTERVAL 15 MINUTE), DATE_ADD(`end_timestamp`, INTERVAL 15 MINUTE), RAND() FROM quantities;
INSERT INTO quantities (`start_timestamp`, `end_timestamp`, `quantity`) SELECT DATE_SUB(`start_timestamp`, INTERVAL 15 MINUTE), DATE_SUB(`end_timestamp`, INTERVAL 15 MINUTE), RAND() FROM quantities WHERE MOD( (TIME_TO_SEC( `start_timestamp`) - TIME_TO_SEC(CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00')) ), 45 * 60 ) = 0 AND `start_timestamp` > CONCAT(DATE_SUB(CURDATE(), INTERVAL 64 DAY), ' 00:00:00');