Database partition management can be automated; time-based partitioning of the data is a standard way of dealihg with this type of problem, and I'm not sure that I can see any reason why this can't be done with PostgreSQL.
You have approximately 72m rows per day - assuming a device ID, datestamp and two floats for coordinates you will have (say) 16-20 bytes per row plus some minor page metadata overhead. A back-of-fag-packet capacity plan suggests around 1-1.5GB of data per day, or 400-500GB per year, plus indexes if necessary.
If you can live with periodically refreshed data (i.e. not completely up to date) you could build a separate reporting table and periodically update this with an ETL process. If this table is stored on separate physical disk volumes it can be queried without significantly affecting the performance of your transactional data.
A separate reporting database for historical data would also allow you to prune your operational table by dropping older partitions, which would probably help with application performance. You could also index the reporting tables and create summary tables to optimise reporting performance.
If you need low latency data (i.e. reporting on up-to-date data), it may also be possible to build a view where the lead partitions are reported off the operational system and the historical data is reported from the data mart. This would allow the bulk queries to take place on reporting tables optimised for this, while relatively small volumes of current data can be read directly from the operational system.
Most low-latency reporting systems use some variation of this approach - a leading partition can be updated by a real-time process (perhaps triggers) and contains relatively little data, so it can be queried quickly, but contains no baggage that slows down the update. The rest of the historical data can be heavily indexed for reporting. Partitioning by date means that the system will automatically start populating the next partition, and a periodic process can move, re-index or do whatever needs to be done for the historical data to optimise it for reporting.
Note: If your budget runs to PostgreSQL rather than Oracle, you will probably find that direct-attach storage is appreciably faster than a SAN unless you want to spend a lot of money on SAN hardware.