You have to implement those in hardware. The purpose of the "restore defaults from NVRAM" is to restore a so-called "bricked" device.
For example, what if an NVRAM seting is modified (cosmic ray?) such that the device cannot boot? In that case, your proposed button-polling daemon will never execute.
For the one-second held reboot, use an RC (resistor + capacitor) circuit to "debounce" the button press. Select an RC time constant which is appropriate for the one second delay. Use a comparator watching the RC voltage to signal the RESET
pin on the MIPS cpu.
For the three-second press functionality (restore NVRAM defaults), you have to do something more complicated, probably.
One possibility is to put a tiny PIC microcontroller into the reset circuit, but only use a microcontroller with fuse (non-erasable) ROM, not NVRAM.
An easier possibility is to have a ROM containing defaults on the same circuit and bus as the NVRAM. A J/K flip-flop latch can become part of your reset circuitry. You'll also need a three-second-tuned RC circuit and comparator. On sub-three-second presses, the flip-flop should latch a 0
output and on three-second-plus presses, the 2nd RC circuit should trigger the comparator after 3 seconds and present a 1
to the J/K latch, which will toggle its output.
The flip-flop output Q
will store the single bit telling your circuit whether this reset cycle was subsequent to a three-second push. If so, that output Q
is driving the chip select to the NVRAM and Q*
is driving the chip select to ROM. (I assume chip select is negative logic on both NVRAM and ROM chips.)
Then when your CPU boots, it will fetch the settings from either the NVRAM or the ROM, depending on the chip select line.
Your boot code can detect that it booted with ROM chip select, and can later reset the J/K flip-flop with a GPIO line. Then the CPU will be able to write good values back into the NVRAM. That unbricks the device, hopefully.
You want to use ROM that is not erasable or reusable. That kind of ROM is the most resistant to static electricity, power supply trouble, and radiation. Radiation is much more present than we generally realize, and the amount of cosmic ray flux is multiplied by taking a device onboard an airliner, for example.