views:

112

answers:

3

Any tools to convert C code into Java code? I am interested in converting this code into Java:

***************************************************************************/
/*
** UNECM - Decoder for ECM (Error Code Modeler) format.
** Version 1.0
** Copyright (C) 2002 Neill Corlett
**
** This program is free software; you can redistribute it and/or
** modify it under the terms of the GNU General Public License
** as published by the Free Software Foundation; either version 2
** of the License, or (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
*/
/***************************************************************************/
/*
** Portability notes:
**
** - Assumes a 32-bit or higher integer size
** - No assumptions about byte order
** - No assumptions about struct packing
** - No unaligned memory access
*/
/***************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/***************************************************************************/

void banner(void) {
  fprintf(stderr,
    "UNECM - Decoder for Error Code Modeler format v1.0\n"
    "Copyright (C) 2002 Neill Corlett\n\n"
  );
}

/***************************************************************************/

/* Data types */
#define ecc_uint8 unsigned char
#define ecc_uint16 unsigned short
#define ecc_uint32 unsigned

/* LUTs used for computing ECC/EDC */
static ecc_uint8 ecc_f_lut[256];
static ecc_uint8 ecc_b_lut[256];
static ecc_uint32 edc_lut[256];

/* Init routine */
static void eccedc_init(void) {
  ecc_uint32 i, j, edc;
  for(i = 0; i < 256; i++) {
    j = (i << 1) ^ (i & 0x80 ? 0x11D : 0);
    ecc_f_lut[i] = j;
    ecc_b_lut[i ^ j] = i;
    edc = i;
    for(j = 0; j < 8; j++) edc = (edc >> 1) ^ (edc & 1 ? 0xD8018001 : 0);
    edc_lut[i] = edc;
  }
}

/***************************************************************************/
/*
** Compute EDC for a block
*/
ecc_uint32 edc_partial_computeblock(
        ecc_uint32  edc,
  const ecc_uint8  *src,
        ecc_uint16  size
) {
  while(size--) edc = (edc >> 8) ^ edc_lut[(edc ^ (*src++)) & 0xFF];
  return edc;
}

void edc_computeblock(
  const ecc_uint8  *src,
        ecc_uint16  size,
        ecc_uint8  *dest
) {
  ecc_uint32 edc = edc_partial_computeblock(0, src, size);
  dest[0] = (edc >>  0) & 0xFF;
  dest[1] = (edc >>  8) & 0xFF;
  dest[2] = (edc >> 16) & 0xFF;
  dest[3] = (edc >> 24) & 0xFF;
}

/***************************************************************************/
/*
** Compute ECC for a block (can do either P or Q)
*/
static void ecc_computeblock(
  ecc_uint8 *src,
  ecc_uint32 major_count,
  ecc_uint32 minor_count,
  ecc_uint32 major_mult,
  ecc_uint32 minor_inc,
  ecc_uint8 *dest
) {
  ecc_uint32 size = major_count * minor_count;
  ecc_uint32 major, minor;
  for(major = 0; major < major_count; major++) {
    ecc_uint32 index = (major >> 1) * major_mult + (major & 1);
    ecc_uint8 ecc_a = 0;
    ecc_uint8 ecc_b = 0;
    for(minor = 0; minor < minor_count; minor++) {
      ecc_uint8 temp = src[index];
      index += minor_inc;
      if(index >= size) index -= size;
      ecc_a ^= temp;
      ecc_b ^= temp;
      ecc_a = ecc_f_lut[ecc_a];
    }
    ecc_a = ecc_b_lut[ecc_f_lut[ecc_a] ^ ecc_b];
    dest[major              ] = ecc_a;
    dest[major + major_count] = ecc_a ^ ecc_b;
  }
}

/*
** Generate ECC P and Q codes for a block
*/
static void ecc_generate(
  ecc_uint8 *sector,
  int        zeroaddress
) {
  ecc_uint8 address[4], i;
  /* Save the address and zero it out */
  if(zeroaddress) for(i = 0; i < 4; i++) {
    address[i] = sector[12 + i];
    sector[12 + i] = 0;
  }
  /* Compute ECC P code */
  ecc_computeblock(sector + 0xC, 86, 24,  2, 86, sector + 0x81C);
  /* Compute ECC Q code */
  ecc_computeblock(sector + 0xC, 52, 43, 86, 88, sector + 0x8C8);
  /* Restore the address */
  if(zeroaddress) for(i = 0; i < 4; i++) sector[12 + i] = address[i];
}

/***************************************************************************/
/*
** Generate ECC/EDC information for a sector (must be 2352 = 0x930 bytes)
** Returns 0 on success
*/
void eccedc_generate(ecc_uint8 *sector, int type) {
  ecc_uint32 i;
  switch(type) {
  case 1: /* Mode 1 */
    /* Compute EDC */
    edc_computeblock(sector + 0x00, 0x810, sector + 0x810);
    /* Write out zero bytes */
    for(i = 0; i < 8; i++) sector[0x814 + i] = 0;
    /* Generate ECC P/Q codes */
    ecc_generate(sector, 0);
    break;
  case 2: /* Mode 2 form 1 */
    /* Compute EDC */
    edc_computeblock(sector + 0x10, 0x808, sector + 0x818);
    /* Generate ECC P/Q codes */
    ecc_generate(sector, 1);
    break;
  case 3: /* Mode 2 form 2 */
    /* Compute EDC */
    edc_computeblock(sector + 0x10, 0x91C, sector + 0x92C);
    break;
  }
}

/***************************************************************************/

unsigned mycounter;
unsigned mycounter_total;

void resetcounter(unsigned total) {
  mycounter = 0;
  mycounter_total = total;
}

void setcounter(unsigned n) {
  if((n >> 20) != (mycounter >> 20)) {
    unsigned a = (n+64)/128;
    unsigned d = (mycounter_total+64)/128;
    if(!d) d = 1;
    fprintf(stderr, "Decoding (%02d%%)\r", (100*a) / d);
  }
  mycounter = n;
}

int unecmify(
  FILE *in,
  FILE *out
) {
  unsigned checkedc = 0;
  unsigned char sector[2352];
  unsigned type;
  unsigned num;
  fseek(in, 0, SEEK_END);
  resetcounter(ftell(in));
  fseek(in, 0, SEEK_SET);
  if(
    (fgetc(in) != 'E') ||
    (fgetc(in) != 'C') ||
    (fgetc(in) != 'M') ||
    (fgetc(in) != 0x00)
  ) {
    fprintf(stderr, "Header not found!\n");
    goto corrupt;
  }
  for(;;) {
    int c = fgetc(in);
    int bits = 5;
    if(c == EOF) goto uneof;
    type = c & 3;
    num = (c >> 2) & 0x1F;
    while(c & 0x80) {
      c = fgetc(in);
      if(c == EOF) goto uneof;
      num |= ((unsigned)(c & 0x7F)) << bits;
      bits += 7;
    }
    if(num == 0xFFFFFFFF) break;
    num++;
    if(num >= 0x80000000) goto corrupt;
    if(!type) {
      while(num) {
        int b = num;
        if(b > 2352) b = 2352;
        if(fread(sector, 1, b, in) != b) goto uneof;
        checkedc = edc_partial_computeblock(checkedc, sector, b);
        fwrite(sector, 1, b, out);
        num -= b;
        setcounter(ftell(in));
      }
    } else {
      while(num--) {
        memset(sector, 0, sizeof(sector));
        memset(sector + 1, 0xFF, 10);
        switch(type) {
        case 1:
          sector[0x0F] = 0x01;
          if(fread(sector + 0x00C, 1, 0x003, in) != 0x003) goto uneof;
          if(fread(sector + 0x010, 1, 0x800, in) != 0x800) goto uneof;
          eccedc_generate(sector, 1);
          checkedc = edc_partial_computeblock(checkedc, sector, 2352);
          fwrite(sector, 2352, 1, out);
          setcounter(ftell(in));
          break;
        case 2:
          sector[0x0F] = 0x02;
          if(fread(sector + 0x014, 1, 0x804, in) != 0x804) goto uneof;
          sector[0x10] = sector[0x14];
          sector[0x11] = sector[0x15];
          sector[0x12] = sector[0x16];
          sector[0x13] = sector[0x17];
          eccedc_generate(sector, 2);
          checkedc = edc_partial_computeblock(checkedc, sector + 0x10, 2336);
          fwrite(sector + 0x10, 2336, 1, out);
          setcounter(ftell(in));
          break;
        case 3:
          sector[0x0F] = 0x02;
          if(fread(sector + 0x014, 1, 0x918, in) != 0x918) goto uneof;
          sector[0x10] = sector[0x14];
          sector[0x11] = sector[0x15];
          sector[0x12] = sector[0x16];
          sector[0x13] = sector[0x17];
          eccedc_generate(sector, 3);
          checkedc = edc_partial_computeblock(checkedc, sector + 0x10, 2336);
          fwrite(sector + 0x10, 2336, 1, out);
          setcounter(ftell(in));
          break;
        }
      }
    }
  }
  if(fread(sector, 1, 4, in) != 4) goto uneof;
  fprintf(stderr, "Decoded %ld bytes -> %ld bytes\n", ftell(in), ftell(out));
  if(
    (sector[0] != ((checkedc >>  0) & 0xFF)) ||
    (sector[1] != ((checkedc >>  8) & 0xFF)) ||
    (sector[2] != ((checkedc >> 16) & 0xFF)) ||
    (sector[3] != ((checkedc >> 24) & 0xFF))
  ) {
    fprintf(stderr, "EDC error (%08X, should be %02X%02X%02X%02X)\n",
      checkedc,
      sector[3],
      sector[2],
      sector[1],
      sector[0]
    );
    goto corrupt;
  }
  fprintf(stderr, "Done; file is OK\n");
  return 0;
uneof:
  fprintf(stderr, "Unexpected EOF!\n");
corrupt:
  fprintf(stderr, "Corrupt ECM file!\n");
  return 1;
}

/***************************************************************************/

int main(int argc, char **argv) {
  FILE *fin, *fout;
  char *infilename;
  char *outfilename;
  banner();
  /*
  ** Initialize the ECC/EDC tables
  */
  eccedc_init();
  /*
  ** Check command line
  */
  if((argc != 2) && (argc != 3)) {
    fprintf(stderr, "usage: %s ecmfile [outputfile]\n", argv[0]);
    return 1;
  }
  /*
  ** Verify that the input filename is valid
  */
  infilename = argv[1];
  if(strlen(infilename) < 5) {
    fprintf(stderr, "filename '%s' is too short\n", infilename);
    return 1;
  }
  if(strcasecmp(infilename + strlen(infilename) - 4, ".ecm")) {
    fprintf(stderr, "filename must end in .ecm\n");
    return 1;
  }
  /*
  ** Figure out what the output filename should be
  */
  if(argc == 3) {
    outfilename = argv[2];
  } else {
    outfilename = malloc(strlen(infilename) - 3);
    if(!outfilename) abort();
    memcpy(outfilename, infilename, strlen(infilename) - 4);
    outfilename[strlen(infilename) - 4] = 0;
  }
  fprintf(stderr, "Decoding %s to %s.\n", infilename, outfilename);
  /*
  ** Open both files
  */
  fin = fopen(infilename, "rb");
  if(!fin) {
    perror(infilename);
    return 1;
  }
  fout = fopen(outfilename, "wb");
  if(!fout) {
    perror(outfilename);
    fclose(fin);
    return 1;
  }
  /*
  ** Decode
  */
  unecmify(fin, fout);
  /*
  ** Close everything
  */
  fclose(fout);
  fclose(fin);
  return 0;
}
+5  A: 

Your best bet is to rewrite the code.

Any automated conversion would, at best, yield poor-quality and unmaintainable code.

James McNellis
A: 

Have you considered using JNI instead of bothering doing the translation from C to Java?

Catchwa
I have and I am intimidated. At first I tried to compile this for Android, and run it using exec(). I don't think that I compiled it correctly, but didn't know how to test it. Then I looked towards Android NDK and that is just as intimidating. But if you could give me some direction that would be great too.
Aymon Fournier
A better idea is to rewrite the C code in Java by hand. JNI introduces a whole stack of issues; e.g. portability, building, JVM stability, etc.
Stephen C
Are all the functions in the above code able o be translated into Java?
Aymon Fournier
@Aymon: Any turing-complete language (which both C and Java are) can represent anything that can be represented in any other turing-complete language. While the syntax and the approach might be different (even wildly different), there's nothing that you can do in terms of input-output in C or Java that you can't do in the other.
Adam Robinson
+2  A: 

The C view of the world does not mix well with the Java view of the world. If you really want to compile to a form executable by Java, have a look at NestedVM - http://nestedvm.ibex.org/ - which is a cross compiler compiling to a MIPS-dialect which can then easily be "run" in Java either through interpretation or by conversion to actual bytecode reflecting the original MIPS-instructions.

I would recommend getting a Java version of the code.

Thorbjørn Ravn Andersen
+1 for the really strange, novel approach.
RBerteig
This looks interesting. I will have to try it after my vacation!
Aymon Fournier
Getting the cross compiler running is the tricky part.
Thorbjørn Ravn Andersen