I want to second the sentiment that the 5mb pre-allocation approach is "insane", but for another reason: it's subject to race conditions. If the cause of memory exhaustion is within your program (virtual address space exhausted), another thread could claim the 5mb after you free it but before you get to use it. If the cause of memory exhaustion is lack of physical resources on the machine due to other processes using too much memory, those other processes could claim the 5mb after you free it (if the malloc implementation returns the space to the system).
Some applications, like a music or movie player, would be perfectly justified just exiting/crashing on allocation failures - they're managing little if any modifiable data. On the other hand, I believe any application that is being used to modify potentially-valuable data needs to have a way to (1) ensure that data already on disk is left in a consistent, non-corrupted state, and (2) write out a recovery journal of some sort so that, on subsequent invocations, the user can recover any data lost when the application was forced to close.
As we've seen in the first paragraph, due to race conditions your "malloc 5mb and free it" approach does not work. Ideally, the code to synchronize data and write recovery information would be completely allocation-free; if your program is well-designed, it's probably naturally allocation-free. One possible approach if you know you will need allocations at this stage is to implement your own allocator that works in a small static buffer/pool, and use it during allocation-failure shutdown.