You're going to run into a couple of issues here. The starvation avoidance mechanism of the scheduler will see your tasks as blocked as they wait on processes. It will find it hard to distinguish between a deadlocked thread and one simply waiting for a process to complete. As a result it may schedule new tasks if your tasks run or a long time (see below). The hillclimbing heuristic should take into account the overall load on the system, both from your application and others. It simply tries to maximize work done, so it will add more work until the overall throughput of the system stops increasing and then it will back off. I don't think this will effect your application but the stavation avoidance issue probably will.
You can find more detail as to how this all works in Parallel Programming with Microsoft®.NET, Colin Campbell, Ralph Johnson, Ade Miller, Stephen Toub (an earlier draft is online).
"The .NET thread pool automatically manages the number of worker
threads in the pool. It adds and removes threads according to built-in
heuristics. The .NET thread pool has two main mechanisms for injecting
threads: a starvation-avoidance mechanism that adds worker
threads if it sees no progress being made on queued items and a hillclimbing
heuristic that tries to maximize throughput while using as
few threads as possible.
The goal of starvation avoidance is to prevent deadlock. This kind
of deadlock can occur when a worker thread waits for a synchronization
event that can only be satisfied by a work item that is still pending
in the thread pool’s global or local queues. If there were a fixed
number of worker threads, and all of those threads were similarly
blocked, the system would be unable to ever make further progress.
Adding a new worker thread resolves the problem.
A goal of the hill-climbing heuristic is to improve the utilization
of cores when threads are blocked by I/O or other wait conditions
that stall the processor. By default, the managed thread pool has one
worker thread per core. If one of these worker threads becomes
blocked, there’s a chance that a core might be underutilized, depending
on the computer’s overall workload. The thread injection logic
doesn’t distinguish between a thread that’s blocked and a thread
that’s performing a lengthy, processor-intensive operation. Therefore,
whenever the thread pool’s global or local queues contain pending
work items, active work items that take a long time to run (more than
a half second) can trigger the creation of new thread pool worker
threads.
The .NET thread pool has an opportunity to inject threads every
time a work item completes or at 500 millisecond intervals, whichever
is shorter. The thread pool uses this opportunity to try adding threads
(or taking them away), guided by feedback from previous changes in
the thread count. If adding threads seems to be helping throughput,
the thread pool adds more; otherwise, it reduces the number of
worker threads. This technique is called the hill-climbing heuristic.
Therefore, one reason to keep individual tasks short is to avoid
“starvation detection,” but another reason to keep them short is to
give the thread pool more opportunities to improve throughput by
adjusting the thread count. The shorter the duration of individual
tasks, the more often the thread pool can measure throughput and
adjust the thread count accordingly.
To make this concrete, consider an extreme example. Suppose
that you have a complex financial simulation with 500 processor-intensive
operations, each one of which takes ten minutes on average
to complete. If you create top-level tasks in the global queue for each
of these operations, you will find that after about five minutes the
thread pool will grow to 500 worker threads. The reason is that the
thread pool sees all of the tasks as blocked and begins to add new
threads at the rate of approximately two threads per second.
What’s wrong with 500 worker threads? In principle, nothing, if
you have 500 cores for them to use and vast amounts of system
memory. In fact, this is the long-term vision of parallel computing.
However, if you don’t have that many cores on your computer, you are
in a situation where many threads are competing for time slices. This
situation is known as processor oversubscription. Allowing many
processor-intensive threads to compete for time on a single core adds
context switching overhead that can severely reduce overall system
throughput. Even if you don’t run out of memory, performance in this
situation can be much, much worse than in sequential computation.
(Each context switch takes between 6,000 and 8,000 processor cycles.)
The cost of context switching is not the only source of overhead.
A managed thread in .NET consumes roughly a megabyte of stack
space, whether or not that space is used for currently executing functions.
It takes about 200,000 CPU cycles to create a new thread, and
about 100,000 cycles to retire a thread. These are expensive operations.
As long as your tasks don’t each take minutes, the thread pool’s
hill-climbing algorithm will eventually realize it has too many threads
and cut back on its own accord. However, if you do have tasks that
occupy a worker thread for many seconds or minutes or hours, that
will throw off the thread pool’s heuristics, and at that point you
should consider an alternative.
The first option is to decompose your application into shorter
tasks that complete fast enough for the thread pool to successfully
control the number of threads for optimal throughput.
A second possibility is to implement your own task scheduler
object that does not perform thread injection. If your tasks are of long
duration, you don’t need a highly optimized task scheduler because
the cost of scheduling will be negligible compared to the execution
time of the task. MSDN® developer program has an example of a
simple task scheduler implementation that limits the maximum degree
of concurrency. For more information, see the section, “Further Reading,”
at the end of this chapter.
As a last resort, you can use the SetMaxThreads method to
configure the ThreadPool class with an upper limit for the number
of worker threads, usually equal to the number of cores (this is the
Environment.ProcessorCount property). This upper limit applies for
the entire process, including all AppDomains."