I agree with you that ML problems in which the response variable is on an ordinal scale
require special handling--'machine-mode' (i.e., returning a class label) seems insufficient
because the class labels ignore the relationship among the labels ("1st, 2nd, 3rd");
likewise, 'regression-mode' (i.e., treating the ordinal labels as floats, {1, 2, 3}) because
it ignores the metric distance between the response variables (e.g., 3 - 2 != 1).
R has (at least) several packages directed to ordinal regression. One of these is actually called Ordinal, but i haven't used it. I have used the Design Package in R for ordinal regression and i can certainly recommend it. Design contains a complete set of functions for solution, diagnostics, testing, and results presentation of ordinal regression problems via the Ordinal Logistic Model. Both Packages are available from CRAN) A step-by-step solution of an ordinal regression problem using the Design Package is presented on the UCLA Stats Site.
Also, i recently looked at a paper by a group at Yahoo working on ordinal classification using Support Vector Machines. I have not attempted to apply their technique.