I'm assuming that you are using an ATA or SATA drive connected to the built-in disk controller in a standard computer. Is this a valid assumption, or are you using anything out of the ordinary (hardware RAID controller, SCSI drives, external drive, etc)?
As an engineer who does a lot of disk I/O performance testing at work, I would say that this sounds a lot like your writes are being cached somewhere. Your "high latency" I/O is a result of that cache finally being flushed. Even without a filesystem, I/O operations can be cached in the I/O controller or in the disk itself.
To get a better view of what is going on, record not just your max latency, but your average latency as well. Consider recording your max 10-15 latency samples so you can get a better picture of how (in-)frequent these high-latency samples are. Also, throw out the data recorded in the first two or three seconds of your test and start your data logging after that. There can be high-latency I/O operations seen at the start of a disk test that aren't indicative of the disk's true performance (can be caused by things like the disk having to rev up to full speed, the head having to do a large initial seek, disk write cache being flushed, etc).
If you are wanting to benchmark disk I/O performance, I would recommend using a tool like IOMeter instead of using dd
or rolling your own. IOMeter makes it easy to see what kind of a difference it makes to change the I/O size, alignment, etc, plus it keeps track of a number of useful statistics.
Requiring an I/O operation to happen within a certain amount of time is a risky thing to do. For one, other applications on the system can compete with you for disk access or CPU time and it is nearly impossible to predict their exact effect on your I/O speeds. Your disk might encounter a bad block, in which case it has to do some extra work to remap the affected sectors before processing your I/O. This introduces an unpredictable delay. You also can't control what the OS, driver, and disk controller are doing. Your I/O request may get backed up in one of those layers for any number of unforseeable reasons.
If the only reason you have a hard limit on I/O time is because your buffer is being re-used, consider changing your algorithm instead. Try using a circular buffer so that you can flush data out of it while writing into it. If you see that you are filling it faster than flushing it, you can throttle back your buffer usage. Alternatively, you can also create multiple buffers and cycle through them. When one buffer fills up, write that buffer to disk and switch to the next one. You can be writing to the new buffer even if the first is still being written.
Response to comment:
You can't really "get the kernel out of the way", it's the lowest level in the system and you have to go through it to one degree or another. You might be able to build a custom version of the driver for your disk controller (provided it's open source) and build in a "high-priority" I/O path for your application to use. You are still at the mercy of the disk controller's firmware and the firmware/hardware of the drive itself, which you can't necessarily predict or do anything about.
Hard drives traditionally perform best when doing large, sequential I/O operations. Drivers, device firmware, and OS I/O subsystems take this into account and try to group smaller I/O requests together so that they only have to generate a single, large I/O request to the drive. If you are only flushing 32K at a time, then your writes are probably being cached at some level, coalesced, and sent to the drive all at once. By defeating this coalescing, you should reduce the number of I/O latency "spikes" and see more uniform disk access times. However, these access times will be much closer to the large times seen in your "spikes" than the moderate times that you are normally seeing. The latency spike corresponds to an I/O request that didn't get coalesced with any others and thus had to absorb the entire overhead of a disk seek. Request coalescing is done for a reason; by bundling requests you are amortizing the overhead of a drive seek operation over multiple commands. Defeating coalescing leads to doing more seek operations than you would normally, giving you overall slower I/O speeds. It's a trade-off: you reduce your average I/O latency at the expense of occasionally having an abnormal, high-latency operation. It is a beneficial trade-off, however, because the increase in average latency associated with disabling coalescing is nearly always more of a disadvantage than having a more consistent access time is an advantage.
I'm also assuming that you have already tried adjusting thread priorities, and that this isn't a case of your high-bandwidth producer thread starving out the buffer-flushing thread for CPU time. Have you confirmed this?
You say that you do not want to disturb the high-bandwidth thread that is also running on the system. Have you actually tested various output buffer sizes/quantities and measured their impact on the other thread? If so, please share some of the results you measured so that we have more information to use when brainstorming.
Given the amount of memory that most machines have, moving from a 32K buffer to a system that rotates through 4 32K buffers is a rather inconsequential jump in memory usage. On a system with 1GB of memory, the increase in buffer size represents only 0.0092% of the system's memory. Try moving to a system of alternating/rotating buffers (to keep it simple, start with 2) and measure the impact on your high-bandwidth thread. I'm betting that the extra 32K of memory isn't going to have any sort of noticeable impact on the other thread. This shouldn't be "dirtying the cache" of the producer thread. If you are constantly using these memory regions, they should always be marked as "in use" and should never get swapped out of physical memory. The buffer being flushed must stay in physical memory for DMA to work, and the second buffer will be in memory because your producer thread is currently writing to it. It is true that using an additional buffer will reduce the total amount of physical memory available to the producer thread (albeit only very slightly), but if you are running an application that requires high bandwidth and low latency then you would have designed your system such that it has quite a lot more than 32K of memory to spare.
Instead of solving the problem by trying to force the hardware and low-level software to perform to specific performance measurements, the easier solution is to adjust your software to fit the hardware. If you measure your max write latency to be 1 second (for the sake of nice round numbers), write your program such that a buffer that is flushed to disk will not need to be re-used for at least 2.5-3 seconds. That way you cover your worst-case scenario, plus provide a safety margin in case something really unexpected happens. If you use a system where you rotate through 3-4 output buffers, you shouldn't have to worry about re-using a buffer before it gets flushed. You aren't going to be able to control the hardware too closely, and if you are already writing to a raw volume (no filesystem) then there's not much between you and the hardware that you can manipulate or eliminate. If your program design is inflexible and you are seeing unacceptable latency spikes, you can always try a faster drive. Solid-state drives don't have to "seek" to do I/O operations, so you should see a fairly uniform hardware I/O latency.