Here's an implementation of the backtracking approach:
import java.util.Random;
public class Sudoku {
public static void main(String[] args) {
Random rand = new Random();
int r = rand.nextInt(9);
int c = rand.nextInt(9);
int value = rand.nextInt(9) + 1;
Board board = new Board();
board.set(r, c, value);
System.out.println(board);
solve(board, 0);
System.out.println(board);
}
private static boolean solve(Board board, int at) {
if (at == 9*9)
return true;
int r = at / 9;
int c = at % 9;
if (board.isSet(r, c))
return solve(board, at + 1);
for (int value = 1; value <= 9; value++) {
if (board.canSet(r, c, value)) {
board.set(r, c, value);
if (solve(board, at + 1))
return true;
board.unSet(r, c);
}
}
return false;
}
static class Board {
private int[][] board = new int[9][9];
private boolean[][] rs = new boolean[9][10];
private boolean[][] cs = new boolean[9][10];
private boolean[][][] bs = new boolean[3][3][10];
public Board() {}
public boolean canSet(int r, int c, int value) {
return !isSet(r, c) && !rs[r][value] && !cs[c][value] && !bs[r/3][c/3][value];
}
public boolean isSet(int r, int c) {
return board[r][c] != 0;
}
public void set(int r, int c, int value) {
if (!canSet(r, c, value))
throw new IllegalArgumentException();
board[r][c] = value;
rs[r][value] = cs[c][value] = bs[r/3][c/3][value] = true;
}
public void unSet(int r, int c) {
if (isSet(r, c)) {
int value = board[r][c];
board[r][c] = 0;
rs[r][value] = cs[c][value] = bs[r/3][c/3][value] = false;
}
}
public String toString() {
StringBuilder ret = new StringBuilder();
for (int r = 0; r < 9; r++) {
for (int c = 0; c < 9; c++)
ret.append(board[r][c]);
ret.append("\n");
}
return ret.toString();
}
}
}