The problem with the code posted is that if we evaluate foo(1) we need to find foo(0) and foo (-1), foo(-1) then needs to find foo(-2) and foo(-3) and so on. This will keep putting more calls to foo() until there is no more space in the memory resulting in a stack overflow. How many calls to foo are made will depend on the size of the call stack, which will be implementation specific.
When I see these lines of code I immediately get the impression that whoever wrote it hasn't thought about all the possible inputs that could be fed to the function.
To make a recursive Fibonacci function that doesn't fail for foo(1) or a negative input we get:
foo (int n) {
if( n < 0 ) return 0;
if (n == 0) return 1;
return foo(n-1) + foo(n-2);
}
Edit: perhaps the return for a negative number should be something else, as the fibonacci sequence isn't implicitly defined for negative indexes.
However if we use the extension that fib(-n) = (-1)^(n+1) fib(n) we could get the following code:
int fib(int n) {
if( n == -1){
return 1;
}else if ( n < 0 ){
return ( (-1)^(-n+1 ) * fib(-n) );
}else if (n == 0){
return 1;
}else{
return fib(n-1) + fib(n-2);
}
}