Compare the bits from left to right, looking for the leftmost bits that differ. Assuming a machine that is two's complement, the topmost bit determines the sign and will have a flipped comparison sense versus the other bits. This should work on any two's complement machine:
int compare(int x, int y) {
unsigned int mask = ~0U - (~0U >> 1); // select left-most bit
if (x & mask && ~y & mask)
return -1; // x < 0 and y >= 0, therefore y > x
else if (~x & mask && y & mask)
return 1; // x >= 0 and y < 0, therefore x > y
for (; mask; mask >>= 1) {
if (x & mask && ~y & mask)
return 1;
else if (~x & mask && y & mask)
return -1;
}
return 0;
}
[Note that this technically isn't portable. C makes no guarantees that signed arithmetic will be two's complement. But you'll be hard pressed to find a C implementation on a modern machine that behaves differently.]
To see why this works, consider first comparing two unsigned numbers, 13d = 1101b and 11d = 1011b. (I'm assuming a 4-bit wordsize for brevity.) The leftmost differing bit is the second from the left, which the former has set, while the other does not. The former number is therefore the larger. It should be fairly clear that this principle holds for all unsigned numbers.
Now, consider two's complement numbers. You negate a number by complementing the bits and adding one. Thus, -1d = 1111b, -2d = 1110b, -3d = 1101b, -4d = 1100b, etc. You can see that two negative numbers can be compared as though they were unsigned. Likewise, two non-negative numbers can also be compared as though unsigned. Only when the signs differ do we have to consider them -- but if they differ, the comparison is trivial!