How should I compute log to the base 2 in python. Eg. I have this equation where i am using log base 2 import math e = -(t/T)* math.log((t/T)[, 2])
+2
A:
>>> def log2( x ):
... return math.log( x ) / math.log( 2 )
...
>>> log2( 2 )
1.0
>>> log2( 4 )
2.0
>>> log2( 8 )
3.0
>>> log2( 2.4 )
1.2630344058337937
>>>
puzz
2010-09-15 16:19:20
This is built in to the `math.log` function. See unutbu's answer.
tgray
2010-09-15 16:26:42
You're right, didn't know that - thanks ;)
puzz
2010-09-15 16:34:05
A:
Don't forget that log[base A] x = log[base B] x / log[base B] A.
So if you only have log
(for natural log) and log10
(for base-10 log), you can use
myLog2Answer = log10(myInput) / log10(2)
Platinum Azure
2010-09-15 16:20:27
+15
A:
It's good to know that
but also know that
math.log
takes an optional second argument which allows you to specify the base:
In [22]: import math
In [23]: math.log?
Type: builtin_function_or_method
Base Class: <type 'builtin_function_or_method'>
String Form: <built-in function log>
Namespace: Interactive
Docstring:
log(x[, base]) -> the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
In [25]: math.log(8,2)
Out[25]: 3.0
unutbu
2010-09-15 16:23:24
+1
A:
http://en.wikipedia.org/wiki/Binary_logarithm
def lg(x, tol=1e-13):
res = 0.0
# Integer part
while x<1:
res -= 1
x *= 2
while x>=2:
res += 1
x /= 2
# Fractional part
fp = 1.0
while fp>=tol:
fp /= 2
x *= x
if x >= 2:
x /= 2
res += fp
return res
Ugo
2010-09-15 16:24:22
+2
A:
Using numpy:
In [1]: import numpy as np
In [2]: np.log2?
Type: function
Base Class: <type 'function'>
String Form: <function log2 at 0x03049030>
Namespace: Interactive
File: c:\python26\lib\site-packages\numpy\lib\ufunclike.py
Definition: np.log2(x, y=None)
Docstring:
Return the base 2 logarithm of the input array, element-wise.
Parameters
----------
x : array_like
Input array.
y : array_like
Optional output array with the same shape as `x`.
Returns
-------
y : ndarray
The logarithm to the base 2 of `x` element-wise.
NaNs are returned where `x` is negative.
See Also
--------
log, log1p, log10
Examples
--------
>>> np.log2([-1, 2, 4])
array([ NaN, 1., 2.])
In [3]: np.log2(8)
Out[3]: 3.0
Selinap
2010-09-15 16:37:07