The algorithm you have is fine for a homework assignment. There are all sorts of things you could do to optimise the code, such as:
- use a binary tree for efficiency,
- use an array of counts where the index is the number (assuming the number range is limited).
But I think you'll find they're not necessary in this case. For homework, the intent is just to show that you understand how to program, not that you know all sorts of tricks for wringing out the last ounce of performance. Your educator will be looking far more for readable, structured, code than tricky optimisations.
I'll describe below what I'd do. You're obviously free to use my advice as much or as little as you wish, depending on how much satisfaction you want to gain at doing it yourself. I'll provide pseudo-code only, which is my standard practice for homework questions.
I would start with a structure holding a number, a count and next pointer (for your linked list) and the global pointer to the first one:
typedef struct sElement {
int number;
int count;
struct sElement *next;
} tElement;
tElement first = NULL;
Then create some functions for creating and using the list:
tElement *incrementElement (int number);
tElement *getMaxCountElement (void);
tElement *getNextMatching (tElement *ptr, int count);
Those functions will, respectively:
- Increment the count for an element (or create it and set count to 1).
- Scan all the elements returning the maximum count.
- Get the next element pointer matching the count, starting at a given point, or NULL if no more.
The pseudo-code for each:
def incrementElement (number):
# Find matching number in list or NULL.
set ptr to first
while ptr is not NULL:
if ptr->number is equal to number:
return ptr
set ptr to ptr->next
# If not found, add one at start with zero count.
if ptr is NULL:
set ptr to newly allocated element
set ptr->number to number
set ptr->count to 0
set ptr->next to first
set first to ptr
# Increment count.
set ptr->count to ptr->count + 1
def getMaxCountElement (number):
# List empty, no mode.
if first is NULL:
return NULL
# Assume first element is mode to start with.
set retptr to first
# Process all other elements.
set ptr to first->next
while ptr is not NULL:
# Save new mode if you find one.
if ptr->count is greater than retptr->count:
set retptr to ptr
set ptr to ptr->next
# Return actual mode element pointer.
return retptr
def getNextMatching (ptr, number):
# Process all elements.
while ptr is not NULL:
# If match on count, return it.
if ptr->number is equal to number:
return ptr
set ptr to ptr->next
# Went through whole list with no match, return NULL.
return NULL
Then your main program becomes:
# Process all the numbers, adding to (or incrementing in) list .
for each n in numbers to process:
incrementElement (n)
# Get the mode quantity, only look for modes if list was non-empty.
maxElem = getMaxCountElement ()
if maxElem is not NULL:
# Find the first one, whil exists, print and find the next one.
ptr = getNextMatching (first, maxElem->count)
while ptr is not NULL:
print ptr->number
ptr = getNextMatching (ptr->next, maxElem->count)