tags:

views:

28

answers:

2

I was reading this excellent article which gives an introduction to Asynchronous programming here http://krondo.com/blog/?p=1209 and I came across the following line which I find hard to understand.

Since there is no actual parallelism(in asnyc), it appears from our diagrams that an asynchronous program will take just as long to execute as a synchronous one, perhaps longer as the asynchronous program might exhibit poorer locality of reference.

Could someone explain how locality of reference comes into picture here?

+1  A: 

Locality of reference, like that Wikipedia article mentions, is the observation that when some data is accessed (on disk, in memory, whatever), other data near that location is often accessed as well. This observation makes sense since developers tend to group similar data together. Since the data are related, they're often processed together. Specifically, this is known as spatial locality.

For a weak example, imagine computing the sum of an array or doing a matrix multiplication. The data representing the array or matrix are typically stored in continguous memory locations, and for this example, once you access one specific location in memory, you will be accessing others close to it as well.

Computer architecture takes locality of reference into account. Operating systems have the notion of "pages" which are (roughly) 4KB chunks of data that can be paged in and out individually (moved between physical memory and disk). When you touch some memory that's not resident (not physically in RAM), the OS will bring the entire page of data off disk and into memory. The reason for this is locality: you're likely to touch other data around what you just touched.

Additionally, CPUs have the concept of caches. For example, a CPU might have an L1 (level 1) cache, which is really just a big block of on-CPU data that the CPU can access faster than RAM. If a value is in the L1 cache, the CPU will use that instead of going out to RAM. Following the principle of the locality of reference, when a CPU access some value in main memory, it will bring that value and all values near it into the L1 cache. This set of values is known as a cache line. Cache lines vary in size, but the point is that when you access the first value of an array, the CPU might have to get it from RAM, but subsequent accesses (close in proximity) will be faster since the CPU brought the whole bundle of values into the L1 cache on the first access.

So, to answer your question: if you imagine a synchronous process computing the sum of a very large array, it will touch memory locations in order one after the other. In this case, your locality is good. In the asynchronous case, however, you might have n threads each taking a slice of the array (of size 1/n) and computing the sub-sum. Each thread is touching a potentially very different location in memory (since the array is large) and since each thread can be switched in and out of execution, the actual pattern of data access from the point of view of the OS or CPU is poor. The L1 cache on a CPU is finite, so if Thread 1 brings in a cache line (due to an access), this might evict the cache line of Thread 2. Then, when Thread 2 goes to access its array value, it has to go to RAM, which will bring in its cache line again and potentially evict the cache line of Thread 1, and so on. Depending on the system resources and usage as a whole, this pattern could happen on the OS/page level as well.

Chris Schmich
Thanks a lot for your detailed answer.
zubin71
+1  A: 

The poorer locality of reference results in poorer cache usage -- each time you do a thread switch, you can expect that most of what's in the cache relates to that previous thread, not the current one, so most reads will get data from main memory instead of the cache.

He's ultimately wrong though, at least for quite a few programs. The reason is pretty simple: even though you gain nothing on CPU-bound code, when you can combine some CPU-bound code with some I/O bound code, you can expect an overall speed improvement. You can, for example, initiate a read or write, then switch to doing computation while the disk is busy, then switch back to the I/O bound thread when the disk finishes its work.

Jerry Coffin