Hi, I have some long source code that involves a struct definition:
struct exec_env {
cl_program* cpPrograms;
cl_context cxGPUContext;
int cpProgramCount;
int cpKernelCount;
int nvidia_platform_index;
int num_cl_mem_buffs_used;
int total;
cl_platform_id cpPlatform;
cl_uint ciDeviceCount;
cl_int ciErrNum;
cl_command_queue commandQueue;
cl_kernel* cpKernels;
cl_device_id *cdDevices;
cl_mem* cmMem;
};
The strange thing, is that the output of my program is dependent on the order in which I declare the components of this struct. Why might this be?
EDIT:
Some more code:
int HandleClient(int sock) {
struct exec_env my_env;
int err, cl_err;
int rec_buff [sizeof(int)];
log("[LOG]: In HandleClient. \n");
my_env.total = 0;
//in anticipation of some cl_mem buffers, we pre-emtively init some. Later, we should have these
//grow/shrink dynamically.
my_env.num_cl_mem_buffs_used = 0;
if ((my_env.cmMem = (cl_mem*)malloc(MAX_CL_BUFFS * sizeof(cl_mem))) == NULL)
{
log("[ERROR]:Failed to allocate memory for cl_mem structures\n");
//let the client know
replyHeader(sock, MALLOC_FAIL, UNKNOWN, 0, 0);
return EXIT_FAILURE;
}
my_env.cpPlatform = NULL;
my_env.ciDeviceCount = 0;
my_env.cdDevices = NULL;
my_env.commandQueue = NULL;
my_env.cxGPUContext = NULL;
while(1){
log("[LOG]: Awaiting next packet header... \n");
//read the first 4 bytes of the header 1st, which signify the function id. We later switch on this value
//so we can read the rest of the header which is function dependent.
if((err = receiveAll(sock,(char*) &rec_buff, sizeof(int))) != EXIT_SUCCESS){
return err;
}
log("[LOG]: Got function id %d \n", rec_buff[0]);
log("[LOG]: Total Function count: %d \n", my_env.total);
my_env.total++;
//now we switch based on the function_id
switch (rec_buff[0]) {
case CREATE_BUFFER:;
{
//first define a client packet to hold the header
struct clCreateBuffer_client_packet my_client_packet_hdr;
int client_hdr_size_bytes = CLI_PKT_HDR_SIZE + CRE_BUFF_CLI_PKT_HDR_EXTRA_SIZE;
//buffer for the rest of the header (except the size_t)
int header_rec_buff [(client_hdr_size_bytes - sizeof(my_client_packet_hdr.buff_size))];
//size_t header_rec_buff_size_t [sizeof(my_client_packet_hdr.buff_size)];
size_t header_rec_buff_size_t [1];
//set the first field
my_client_packet_hdr.std_header.function_id = rec_buff[0];
//read the rest of the header
if((err = receiveAll(sock,(char*) &header_rec_buff, (client_hdr_size_bytes - sizeof(my_client_packet_hdr.std_header.function_id) - sizeof(my_client_packet_hdr.buff_size)))) != EXIT_SUCCESS){
//signal the client that something went wrong. Note we let the client know it was a socket read error at the server end.
err = replyHeader(sock, err, CREATE_BUFFER, 0, 0);
cleanUpAllOpenCL(&my_env);
return err;
}
//read the rest of the header (size_t)
if((err = receiveAll(sock, (char*)&header_rec_buff_size_t, sizeof(my_client_packet_hdr.buff_size))) != EXIT_SUCCESS){
//signal the client that something went wrong. Note we let the client know it was a socket read error at the server end.
err = replyHeader(sock, err, CREATE_BUFFER, 0, 0);
cleanUpAllOpenCL(&my_env);
return err;
}
log("[LOG]: Got the rest of the header, packet size is %d \n", header_rec_buff[0]);
log("[LOG]: Got the rest of the header, flags are %d \n", header_rec_buff[1]);
log("[LOG]: Buff size is %d \n", header_rec_buff_size_t[0]);
//set the remaining fields
my_client_packet_hdr.std_header.packet_size = header_rec_buff[0];
my_client_packet_hdr.flags = header_rec_buff[1];
my_client_packet_hdr.buff_size = header_rec_buff_size_t[0];
//get the payload (if one exists)
int payload_size = (my_client_packet_hdr.std_header.packet_size - client_hdr_size_bytes);
log("[LOG]: payload_size is %d \n", payload_size);
char* payload = NULL;
if(payload_size != 0){
if ((payload = malloc(my_client_packet_hdr.buff_size)) == NULL){
log("[ERROR]:Failed to allocate memory for payload!\n");
replyHeader(sock, MALLOC_FAIL, UNKNOWN, 0, 0);
cleanUpAllOpenCL(&my_env);
return EXIT_FAILURE;
}
if((err = receiveAllSizet(sock, payload, my_client_packet_hdr.buff_size)) != EXIT_SUCCESS){
//signal the client that something went wrong. Note we let the client know it was a socket read error at the server end.
err = replyHeader(sock, err, CREATE_BUFFER, 0, 0);
free(payload);
cleanUpAllOpenCL(&my_env);
return err;
}
}
//make the opencl call
log("[LOG]: ***num_cl_mem_buffs_used before***: %d \n", my_env.num_cl_mem_buffs_used);
cl_err = h_clCreateBuffer(&my_env, my_client_packet_hdr.flags, my_client_packet_hdr.buff_size, payload, &my_env.cmMem);
my_env.num_cl_mem_buffs_used = (my_env.num_cl_mem_buffs_used+1);
log("[LOG]: ***num_cl_mem_buffs_used after***: %d \n", my_env.num_cl_mem_buffs_used);
//send back the reply with the error code to the client
log("[LOG]: Sending back reply header \n");
if((err = replyHeader(sock, cl_err, CREATE_BUFFER, 0, (my_env.num_cl_mem_buffs_used -1))) != EXIT_SUCCESS){
//send the header failed, so we exit
log("[ERROR]: Failed to send reply header to client, %d \n", err);
log("[LOG]: OpenCL function result was %d \n", cl_err);
if(payload != NULL) free(payload);
cleanUpAllOpenCL(&my_env);
return err;
}
//now exit if failed
if(cl_err != CL_SUCCESS){
log("[ERROR]: Error executing OpenCL function clCreateBuffer %d \n", cl_err);
if(payload != NULL) free(payload);
cleanUpAllOpenCL(&my_env);
return EXIT_FAILURE;
}
}
break;
Now what's really interesting is the call to h_clCreateBuffer. This function is as follows
int h_clCreateBuffer(struct exec_env* my_env, int flags, size_t size, void* buff, cl_mem* all_mems){
/*
* TODO:
* Sort out the flags.
* How do we store cl_mem objects persistantly? In the my_env struct? Can we have a pointer int the my_env
* struct that points to a mallocd area of mem. Each malloc entry is a pointer to a cl_mem object. Then we
* can update the malloced area, growing it as we have more and more cl_mem objects.
*/
//check that we have enough pointers to cl_mem. TODO, dynamically expand if not
if(my_env->num_cl_mem_buffs_used == MAX_CL_BUFFS){
return CL_MEM_OUT_OF_RANGE;
}
int ciErrNum;
cl_mem_flags flag;
if(flags == CL_MEM_READ_WRITE_ONLY){
flag = CL_MEM_READ_WRITE;
}
if(flags == CL_MEM_READ_WRITE_OR_CL_MEM_COPY_HOST_PTR){
flag = CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR;
}
log("[LOG]: Got flags. Calling clCreateBuffer\n");
log("[LOG]: ***num_cl_mem_buffs_used before in function***: %d \n", my_env->num_cl_mem_buffs_used);
all_mems[my_env->num_cl_mem_buffs_used] = clCreateBuffer(my_env->cxGPUContext, flag , size, buff, &ciErrNum);
log("[LOG]: ***num_cl_mem_buffs_used after in function***: %d \n", my_env->num_cl_mem_buffs_used);
log("[LOG]: Finished clCreateBuffer with id: %d \n", my_env->num_cl_mem_buffs_used);
//log("[LOG]: Finished clCreateBuffer with id: %d \n", buff_counter);
return ciErrNum;
}
The first time round the while loop, my_env->num_cl_mem_buffs_used is increased by 1. However, the next time round the loop, after the call to clCreateBuffer, the value of my_env->num_cl_mem_buffs_used gets reset to 0. This does not happen when I change the order in which I declare the members of the struct! Thoughts? Note that I've omitted the other case statements, all of which so similar things, i.e. updating the structs members.