I recently read a sample job interview question:
Write a function to convert an integer to a string. Assume you do not have access to library functions i.e., itoa(), etc...
How would you go about this?
I recently read a sample job interview question:
Write a function to convert an integer to a string. Assume you do not have access to library functions i.e., itoa(), etc...
How would you go about this?
I would keep in mind that all of the digit characters are in increasing order within the ASCII character set and do not have other characters between them.
I would also use the /
and the%
operators repeatedly.
How I would go about getting the memory for the string would depend on information you have not given.
Assuming it is in decimal, then like this:
int num = ...;
char res[MaxDigitCount];
int len = 0;
for(; num > 0; ++len)
{
res[len] = num%10+'0';
num/=10;
}
res[len] = 0; //null-terminating
//now we need to reverse res
for(int i = 0; i < len/2; ++i)
{
char c = res[i]; res[i] = res[len-i-1]; res[len-i-1] = c;
}
fast stab at it: (edited to handle negative numbers)
int n = INT_MIN;
char buffer[50];
int i = 0;
bool isNeg = n<0;
unsigned int n1 = isNeg ? -n : n;
while(n1!=0)
{
buffer[i++] = n1%10+'0';
n1=n1/10;
}
if(isNeg)
buffer[i++] = '-';
buffer[i] = '\0';
for(int t = 0; t < i/2; t++)
{
buffer[t] ^= buffer[i-t-1];
buffer[i-t-1] ^= buffer[t];
buffer[t] ^= buffer[i-t-1];
}
printf(buffer);
An implementation of itoa()
function seems like an easy task but actually you have to take care of many aspects that are related on your exact needs. I guess that in the interview you are expected to give some details about your way to the solution rather than copying a solution that can be found in Google (http://en.wikipedia.org/wiki/Itoa)
Here are some questions you may want to ask yourself or the interviewer:
And so on.
Here's a simple approach, but I suspect if you turn this in as-is without understanding and paraphrasing it, your teacher will know you just copied off the net:
char *pru(unsigned x, char *eob)
{
do { *--eob = x%10; } while (x/=10);
return eob;
}
char *pri(int x, char *eob)
{
eob = fmtu(x<0?-x:x, eob);
if (x<0) *--eob='-';
return eob;
}
Various improvements are possible, especially if you want to efficiently support larger-than-word integer sizes up to intmax_t
. I'll leave it to you to figure out the way these functions are intended to be called.
The algorithm is easy to see in English.
Given an integer, e.g. 123
divide by 10 => 123/10. Yielding, result = 12 and remainder = 3
add 30h to 3 and push on stack (adding 30h will convert 3 to ASCII representation)
repeat step 1 until result < 10
add 30h to result and store on stack
the stack contains the number in order of | 1 | 2 | 3 | ...
A look on the web for itoa implementation will give you good examples. Here is one, avoiding to reverse the string at the end. It relies on a static buffer, so take care if you reuse it for different values.
char* itoa(int val, int base){
static char buf[32] = {0};
int i = 30;
for(; val && i ; --i, val /= base)
buf[i] = "0123456789abcdef"[val % base];
return &buf[i+1];
}
Slightly longer than the solution:
static char*
itoa(int n, char s[])
{
int i, sign;
if ((sign = n) < 0)
n = -n;
i = 0;
do
{
s[i++] = n % 10 + '0';
} while ((n /= 10) > 0);
if (sign < 0)
s[i++] = '-';
s[i] = '\0';
reverse(s);
return s;
}
Reverse:
int strlen(const char* str)
{
int i = 0;
while (str != '\0')
{
i++;
str++;
}
return i;
}
static void
reverse(char s[])
{
int i, j;
char c;
for (i = 0, j = strlen(s)-1; i<j; i++, j--) {
c = s[i];
s[i] = s[j];
s[j] = c;
}
}
And although the decision davolno long here are some useful features for beginners. I hope you will be helpful.