The problem is that the doco is gobbledegook, and increases the very confusion it is alleging it clarifies. If you forget about all that and start again, it is actually quite straight-forward. Since you are inquiring re data storage structures, and concerned re performance, let's look at that perspective (not the logical). There is no data storage structure caled "Table".
Heap
Data pages containing rows. There is no Clustered Index. The rows are not shifted as a result of Inserts/Deletes. The rows can be read in entirety (table scan) or singly (via a NonClustered Index). It gets badly fragmented.
Clustered Index
B-Tree. The Index is Clustered with the Data Rows. The leaf level is the data row. That means one less I/O on every access. It also means the B-Tree is reduced by one level in index height (which is why they are tiny if you inspected them). The Heap (entire data storage stucture) is eliminated. There are no pointers. The rows are maintained in Clustered Index Key order (rows are moved on the page as a result of Insert/Delete/Expand). Pages are trimmed within the extents.
NonClustered Index
B-Tree. Full height as required by number of rows.
Where there is a Clustered Index, the Leaf level is the Clustered Index Key (so that it can go to the exact location in the CI, which is the row).
Where there is no Clustered Index, the Leaf level is a pointer: File:Page:Offset (so that it can go to the Heap, and get the row). The RowIds in the Heap do not change (if they did, every time you Inserted/Deleted one row, you would have to update all the NCI entries in all associated NCIs, for all other rows on the page).
That is why, when you create a CI, all NCIs are automatically rebuilt (they have to be switched from [2] to 1). Obviously, always create the CI before the NCIs.
There is no File:Page:Slot, the row length is variable, it is Offset within Page.
There is no Bookmark or other goobledegook.
Re "No direct access to data row in clustered table - why"
Nonsense. You have direct and immediate access to each data row, via the CI (one less I/O) or the NCI⇢CI Key.
This is very fast, invented by Britton Lee; re-implemented and patented by Sybase; obtained by dishonesty and for a pittance by Darth Vader.
If you need further clarification, I can provide illustrations.
Responses to Comments
"It also means the B-Tree is reduced by one level in index height (which is why they are tiny if you inspected them)."
Let's say you have a tables with 1 billion rows. The "height" of the B-Tree of any given index (eg. Unique, on PK) drawn vertically is say 8; or you can say the index is 8 levels deep, between the top (a single entry) and the bottom, the leaf level. the leaf level is of course the widest, and most polpulated; it will have 1 billion entries. Given that each index page contains say 256 entries, the leaf-minus-one level contains 390K entries.
The CI B-tree (index only portion) will contain 7 levels, 390K entries, taking 10MB; because the leaf level IS the data row (of which there are 1 billion entries, spread nicely across 100GB), and is thus excluded, or not repeated.
Yes, I'd like illustrations.
Ok. I have a set of finished Sybase docs; I have butchered one for you, so as to avoid confusion, and excluded the bits that Sybase has, that MS does not. Sorry. Don't follow the links, just stay on the one page. Also the very low levels of Fragmentation in the heap are different by the fragmentation in the Heap is massive, in both Sybase and MS, so I have left that intact.
Data Storage Basics
"I started to read: Debunking myths about clustered indexes - part 4 (CIXs, TPC-C & Oracle clusters) and it, as many other sources, explicitly refer to the fact that SQL Server, in contrat to Oracle, lacks direct access features on a clustered table."
Be careful what you read, the web is full of superficial information; half truths discussed out of context; misinformation (from vendiors as well as well-meaning ignorants). As you notice, I just answer questions; I do not waste time answering points raised in references.
Just think about this. Well-implemented Tables with a CI do not need de-fragmentation; and when implemented badly, need infrequent de-fragmentation; tables without a CI need frequent and pretty much offline de-fragmentation. That's your maintenance window running into Monday morning. Just an example of why discussing items in isolation is actually misinformation. Which is why my docs are all linked and related to one another.
"A few answerers referred to the fact that CI key in NCI leaf is for address independence in case of page splits."
Yes, I just would not put it that way, that's as confusing as the first reference you posted. Page splits have nothing to do with it. I put is the way I did in my post above on purpose, for clarity. Since the rows move (the CI keeps the pages and Extents trim), the NCI MUST have the CI key, in order to find the row. It can't use a RowId which would keep changing all the time. Unless you have wide CI keys, this is no big deal; a 4-byte RowId (plus processing overhead) vs an 8-byte CI key (minus said overhead) ... who cares (ok, maybe you). Address the higher level issues, and the low level issues will be small enough to not warrant address. Squeezing out 1% performance improvement at the low level when your db is fragmented and unnormalised, is amore than a bit silly.
A system in an integrated set of components, none can be changed or evaluated in isolation. A bunch of components that are not integrated are dis-integrated, not a system. At your level of questioning, you are not yet in a position to form conclusions, or have grudges against this or that, if you do, they are premature conclusions and grudges, that will impede your progress. On top of that, there is a big difference between knowledge gained by question-and-answer vs knowledge gained by reading plus experience.
"Aren't during undex reotganization or defragmanting of non-clustered table with CI the rows relocated and corresponding RIDs in NCI change in NCI?"
Do you mean "non-clustered INDEX with CI" ? Well the NCIs are not worth de-fragmenting, just drop/create them.
Or do you mean "de-fragmenting a CI [whole table]" ? I have already posted, when you re-create the CI (or de-fragment it in place), the NCIs are automatically rebuilt. It is not about RowIds, it is about the change: when you drop the CI, the NCIs have to be rewritten from CI keys to RowIds; when you create the CI, the NCIs have to the changed back to CI Keys. Switched on DBAs drop the NCI before dropping the CI.
"This seems to me as addressing scheme deficiency - the row should have moved with its address, should have not it?"
You're getting too low-level without understanding the higher levels. If the row moves, its address changes; if the address changes, the row moves. Either you have a CI (rows move) xor you have a Heap (rows do not move).
"Also, Is heap completely immune to page splits?"
No. Page Splits still happen when variable length rows expand and there is no room on the page. But in the scheme of things, massive fragmentation on Heaps, due to never moving rows, due to it being RowId based (which the NCIs rely on), this is a small item.