There is a third possibility here, which is that the array can be declared external to a function, but statically, eg,
// file foo.c
char name[256];
int foo() {
// do something here.
}
I was rather surprised in answers to another question on SO that someone felt this was inappropriate in C; here's it's not even mentioned, and I'm a little confused and surprised (like "what are they teaching kids in school these days?") about this.
If you use this definition, the memory is allocated statically, neither on the heap nor the stack, but in data space in the image. Thus is neither must be managed as with malloc/free, nor do you have to worry about the address being reused as you would with an auto definition.
It's useful to recall the whole "declared" vs "defined" thing here. Here's an example
/* example.c */
char buf1[256] ; /* declared extern, defined in data space */
static char buf2[256] ; /* declared static, defined in data space */
char * buf3 ; /* declared extern, defined one ptr in data space */
int example(int c) { /* c declared here, defined on stack */
char buf4[256] ; /* declared here, defined on stack */
char * buf5 = malloc(256)] /* pointer declared here, defined on stack */
/* and buf4 is address of 256 bytes alloc'd on heap */
buf3 = malloc(256); /* now buf3 contains address of 256 more bytes on heap */
return 0; /* stack unwound; buf4 and buf5 lost. */
/* NOTICE buf4 memory on heap still allocated */
/* so this leaks 256 bytes of memory */
}
Now in a whole different file
/* example2.c */
extern char buf1[]; /* gets the SAME chunk of memory as from example.c */
static char buf2[256]; /* DIFFERENT 256 char buffer than example.c */
extern char * buf3 ; /* Same pointer as from example.c */
void undoes() {
free(buf3); /* this will work as long as example() called first */
return ;
}