It might help to note that function closures are essentially equivalent to lazy values:
lazy n : 'a Lazy.t <=> (fun () -> n) : unit -> 'a
force x : 'a <=> x () : 'a
So the type 'a llist
is equivalent to
type 'a llist = 'a cell Lazy.t
i.e., a lazy cell value.
A map implementation might make more sense in terms of the above definition
let rec map f lst =
match force lst with
| Nil -> lazy Nil
| Cons (hd,tl) -> lazy (Cons (f hd, map f tl))
Translating that back into closures:
let rec map f lst =
match lst () with
| Nil -> (fun () -> Nil)
| Cons (hd,tl) -> (fun () -> Cons (f hd, map f tl))
Similarly with append
let rec append a b =
match force a with
| Nil -> b
| Cons (hd,tl) -> lazy (Cons (hd, append tl b))
becomes
let rec append a b =
match a () with
| Nil -> b
| Cons (hd,tl) -> (fun () -> Cons (hd, append tl b))
I generally prefer to use the lazy
syntax, since it makes it more clear what's going on.
Note, also, that a lazy suspension and a closure are not exactly equivalent. For example,
let x = lazy (print_endline "foo") in
force x;
force x
prints
foo
whereas
let x = fun () -> print_endline "foo" in
x ();
x ()
prints
foo
foo
The difference is that force
computes the value of the expression exactly once.