I'd like to detail more on Bill Karwin's answer about semantic web and triplestores, since it's what I am working on at the moment, and I have something to say on it.
The idea behind a triplestore is to store a graph-based database, whose datamodel roots in RDF. With RDF, you describe nodes and associations among nodes (in other words, edges). Data is organized in triples :
start node ----relation----> end node
(in RDF speech: subject --predicate--> object). With this very simple data model, any data network can be represented by adding more and more triples, provided you give a meaning to nodes and relations.
RDF is very general, and it's a graph-based data model well suited for search criteria looking for all triples with a particular combination of subject, predicate, or object, in any combination. Eventually, through a query language called SPARQL, you can also perform more complex queries, an operation that boils down to a graph isomorphism search onto the graph, both in terms of topology and in terms of node-edge meaning (we'll see this in a moment). SPARQL allows you only SELECT (and similar) queries. No DELETE, no INSERT, no UPDATE. The information you query (e.g. specific nodes you are interested in) are mapped into a table, which is what you get as a result of your query.
Now, topology in itself does not mean a lot. For this, a Schema language has been invented. Actually, more than one, and calling them schema languages is, in some cases, very limitative. The most famous and used today are RDF-Schema, OWL (Lite and Full), and they predate from the obsolete DAML+OIL. The point of these languages is, boiling down stuff, to give a meaning to nodes (by granting them a type, also described as a triple) and to relationships (edges). Also, you can define the "range" and "domain" of these relationships, or said differently what type is the start node and what type is the end node: you can say for example, that the property "numberOfWheels" can be applied only to connect a node of type Vehicle to a non-zero integer value.
ns:MyFiat --rdf:type--> ns:Vehicle
ns:MyFiat --ns:numberOfWheels-> 4
Now, you can use these ontologies in two directions: validation and inference. Validation is not that fancy today, but I've seen instances of use. Inference is what is cool today, because it allows reasoning. Inference basically takes a RDF graph containing a set of triples, takes an ontology, mixes them into a triplestore database which contains an "inference engine" and like magic the inference engine invents triples according to your ontological description. Example: suppose you just store this information in the database
ns:MyFiat --ns:numberOfWheels--> 4
and nothing else. No type is specified about this node, but the inference engine will add automatically a triple saying that
ns:MyFiat --rdf:type--> ns:Vehicle
because you said in your ontology that only objects of type Vehicle can be described by a property numberOfWheels.
Conversely, you can use the inference engine to validate your data against the ontology so to refuse not compliant data (sort of like XML-Schema for XML). In this case, you will need both triples to have your data successfully accepted by the triplestore.
Additional characteristics of triplestores are Formulas and Context-aware storage. Formulas are statements (as usual, triples subject predicate object) that describe something hypothetical. I never used Formulas, so I won't go into more details of something I don't know. Context awareness are basically subgraphs: the problem with storing triples is that you don't have anything to say where these triples come from. Suppose you have two dealers that describe the same price of a component. One says that the price is 5.99 and the other 4.99. If you just store both triples into a database, now you don't know anything about who stated each information. There are two ways to solve this problem.
One is reification. Reification means that you store additional triples to describe another triple. It's wasteful, and makes life hell because you have to reify every and each triple you store. The alternative is context-awareness. Having a context-aware storage It's like being able to box a bunch of triples into a container with a label on it (the context identifier). You now can use this identifier as subject for additional statements, hence describing a bunch of triples in a single action.