No.
First, there's no such thing as a "non-instantiated variable." You instantiate it by the mere act of typing its name and type into your source file.
Second, you already know all there is to know about a variable by looking at it in your source code. The variable ceases to exist once your program is compiled. After that, it's all just bits.
A pointer only has a type at compile time. At run time, everything that can be done to that address has already been determined. The compiler checks for that, as you already noted. Checking the type of a variable at run time is only useful in languages where a variable's type could change, as in dynamic languages. The closest Delphi comes to that is with its Variant
type. The type of the variable is always Variant
, but you can store many types of values in it. To find out what it holds, you can use the VarType
function.
Any time you could want to use TypeInfo
to get the type information of the type associated with a variable, you can also directly name the type you're interested in; if the variable is in scope, then you can go find its declaration and use the declared type in your call to TypeInfo
.
If you want to pass an arbitrary address to a function and have that function discover the type information for itself, you're out of luck. You will instead need to pass the PTypeInfo
value as an additional parameter. That's what all the built-in Delphi functions do. For example, when you call New
on a pointer variable, the compiler inserts an additional parameter that holds the PTypeInfo
value for the type you're allocating. When you call SetLength
on a dynamic array, the compiler inserts a PTypeInfo
value for the array type.
The answer that you gave suggests that you're looking for something other than what you asked for. Given your question, I thought you were looking for a hypothetical function that could satisfy this code:
var
S: string;
Instance: IObjectType;
Obj: TDBGrid;
Info: PTypeInfo;
begin
Info:= GetVariableTypeInfo(@S);
Assert(Info = TypeInfo(string));
Info:= GetVariableTypeInfo(@Instance);
Assert(Info = TypeInfo(IObjectType));
Info:= GetVariableTypeInfo(@Obj);
Assert(Info = TypeInfo(TDBGrid));
end;
Let's use the IsClass
and IsObject
functions from the JCL to build that function:
function GetVariableTypeInfo(pvar: Pointer): PTypeInfo;
begin
if not Assigned(pvar) then
Result := nil
else if IsClass(PPointer(pvar)^) then
Result := PClass(pvar).ClassInfo
else if IsObject(PPointer(pvar)^) then
Result := PObject(pvar).ClassInfo
else
raise EUnknownResult.Create;
end;
It obviously won't work for S
or Instance
above, but let's see what happens with Obj
:
Info := GetVariableTypeInfo(@Obj);
That should give an access violation. Obj
has no value, so IsClass
and IsObject
both will be reading an unspecified memory address, probably not one that belongs to your process. You asked for a routine that would use a variable's address as its input, but the mere address isn't enough.
Now let's take a closer look at how IsClass
and IsObject
really behave. Those functions take an arbitrary value and check whether the value looks like it might be a value of the given kind, either object (instance) or class. Use it like this:
// This code will yield no assertion failures.
var
p: Pointer;
o: TObject;
a: array of Integer;
begin
p := TDBGrid;
Assert(IsClass(p));
p := TForm.Create(nil);
Assert(IsObject(p));
// So far, so good. Works just as expected.
// Now things get interesting:
Pointer(a) := p;
Assert(IsObject(a));
Pointer(a) := nil;
// A dynamic array is an object? Hmm.
o := nil;
try
IsObject(o);
Assert(False);
except
on e: TObject do
Assert(e is EAccessViolation);
end;
// The variable is clearly a TObject, but since it
// doesn't hold a reference to an object, IsObject
// can't check whether its class field looks like
// a valid class reference.
end;
Notice that the functions tell you nothing about the variables, only about the values they hold. I wouldn't really consider those functions, then, to answer the question of how to get type information about a variable.
Furthermore, you said that all you know about the variable is its address. The functions you found do not take the address of a variable. They take the value of a variable. Here's a demonstration:
var
c: TClass;
begin
c := TDBGrid;
Assert(IsClass(c));
Assert(not IsClass(@c)); // Address of variable
Assert(IsObject(@c)); // Address of variable is an object?
end;
You might object to how I'm abusing these functions by passing what's obviously garbage into them. But I think that's the only way it makes sense to talk about this topic. If you know you'll never have garbage values, then you don't need the function you're asking for anyway because you already know enough about your program to use real types for your variables.
Overall, you're asking the wrong question. Instead of asking how you determine the type of a variable or the type of a value in memory, you should be asking how you got yourself into the position where you don't already know the types of your variables and your data.