You don't need an array that large at all.
When your method runs into resource problems, don't just look at how to expand the resources, look at the method also. :)
Here's a class that uses a 3 MB buffer to calculate primes using the sieve of Eratosthenes. The class keeps track of how far you have calculated primes, and when the range needs to be expanded it creates a buffer to test another 3 million numbers.
It keeps the found prime numbers in a list, and when the range is expanded the previos primes are used to rule out numbers in the buffer.
I did some testing, and a buffer around 3 MB is most efficient.
public class Primes {
private const int _blockSize = 3000000;
private List<long> _primes;
private long _next;
public Primes() {
_primes = new List<long>() { 2, 3, 5, 7, 11, 13, 17, 19 };
_next = 23;
}
private void Expand() {
bool[] sieve = new bool[_blockSize];
foreach (long prime in _primes) {
for (long i = ((_next + prime - 1L) / prime) * prime - _next;
i < _blockSize; i += prime) {
sieve[i] = true;
}
}
for (int i = 0; i < _blockSize; i++) {
if (!sieve[i]) {
_primes.Add(_next);
for (long j = i + _next; j < _blockSize; j += _next) {
sieve[j] = true;
}
}
_next++;
}
}
public long this[int index] {
get {
if (index < 0) throw new IndexOutOfRangeException();
while (index >= _primes.Count) {
Expand();
}
return _primes[index];
}
}
public bool IsPrime(long number) {
while (_primes[_primes.Count - 1] < number) {
Expand();
}
return _primes.BinarySearch(number) >= 0;
}
}