Ok, here's what I've come up with for a fixed-point struct, based on the link in my original question but also including some fixes to how it was handling division and multiplication, and added logic for modules, comparisons, shifts, etc:
public struct FInt
{
public long RawValue;
public const int SHIFT_AMOUNT = 12; //12 is 4096
public const long One = 1 << SHIFT_AMOUNT;
public const int OneI = 1 << SHIFT_AMOUNT;
public static FInt OneF = FInt.Create( 1, true );
#region Constructors
public static FInt Create( long StartingRawValue, bool UseMultiple )
{
FInt fInt;
fInt.RawValue = StartingRawValue;
if ( UseMultiple )
fInt.RawValue = fInt.RawValue << SHIFT_AMOUNT;
return fInt;
}
public static FInt Create( double DoubleValue )
{
FInt fInt;
DoubleValue *= (double)One;
fInt.RawValue = (int)Math.Round( DoubleValue );
return fInt;
}
#endregion
public int IntValue
{
get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
}
public int ToInt()
{
return (int)( this.RawValue >> SHIFT_AMOUNT );
}
public double ToDouble()
{
return (double)this.RawValue / (double)One;
}
public FInt Inverse
{
get { return FInt.Create( -this.RawValue, false ); }
}
#region FromParts
/// <summary>
/// Create a fixed-int number from parts. For example, to create 1.5 pass in 1 and 500.
/// </summary>
/// <param name="PreDecimal">The number above the decimal. For 1.5, this would be 1.</param>
/// <param name="PostDecimal">The number below the decimal, to three digits.
/// For 1.5, this would be 500. For 1.005, this would be 5.</param>
/// <returns>A fixed-int representation of the number parts</returns>
public static FInt FromParts( int PreDecimal, int PostDecimal )
{
FInt f = FInt.Create( PreDecimal, true );
if ( PostDecimal != 0 )
f.RawValue += ( FInt.Create( PostDecimal ) / 1000 ).RawValue;
return f;
}
#endregion
#region *
public static FInt operator *( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT;
return fInt;
}
public static FInt operator *( FInt one, int multi )
{
return one * (FInt)multi;
}
public static FInt operator *( int multi, FInt one )
{
return one * (FInt)multi;
}
#endregion
#region /
public static FInt operator /( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue );
return fInt;
}
public static FInt operator /( FInt one, int divisor )
{
return one / (FInt)divisor;
}
public static FInt operator /( int divisor, FInt one )
{
return (FInt)divisor / one;
}
#endregion
#region %
public static FInt operator %( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue ) % ( other.RawValue );
return fInt;
}
public static FInt operator %( FInt one, int divisor )
{
return one % (FInt)divisor;
}
public static FInt operator %( int divisor, FInt one )
{
return (FInt)divisor % one;
}
#endregion
#region +
public static FInt operator +( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue + other.RawValue;
return fInt;
}
public static FInt operator +( FInt one, int other )
{
return one + (FInt)other;
}
public static FInt operator +( int other, FInt one )
{
return one + (FInt)other;
}
#endregion
#region -
public static FInt operator -( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue - other.RawValue;
return fInt;
}
public static FInt operator -( FInt one, int other )
{
return one - (FInt)other;
}
public static FInt operator -( int other, FInt one )
{
return (FInt)other - one;
}
#endregion
#region ==
public static bool operator ==( FInt one, FInt other )
{
return one.RawValue == other.RawValue;
}
public static bool operator ==( FInt one, int other )
{
return one == (FInt)other;
}
public static bool operator ==( int other, FInt one )
{
return (FInt)other == one;
}
#endregion
#region !=
public static bool operator !=( FInt one, FInt other )
{
return one.RawValue != other.RawValue;
}
public static bool operator !=( FInt one, int other )
{
return one != (FInt)other;
}
public static bool operator !=( int other, FInt one )
{
return (FInt)other != one;
}
#endregion
#region >=
public static bool operator >=( FInt one, FInt other )
{
return one.RawValue >= other.RawValue;
}
public static bool operator >=( FInt one, int other )
{
return one >= (FInt)other;
}
public static bool operator >=( int other, FInt one )
{
return (FInt)other >= one;
}
#endregion
#region <=
public static bool operator <=( FInt one, FInt other )
{
return one.RawValue <= other.RawValue;
}
public static bool operator <=( FInt one, int other )
{
return one <= (FInt)other;
}
public static bool operator <=( int other, FInt one )
{
return (FInt)other <= one;
}
#endregion
#region >
public static bool operator >( FInt one, FInt other )
{
return one.RawValue > other.RawValue;
}
public static bool operator >( FInt one, int other )
{
return one > (FInt)other;
}
public static bool operator >( int other, FInt one )
{
return (FInt)other > one;
}
#endregion
#region <
public static bool operator <( FInt one, FInt other )
{
return one.RawValue < other.RawValue;
}
public static bool operator <( FInt one, int other )
{
return one < (FInt)other;
}
public static bool operator <( int other, FInt one )
{
return (FInt)other < one;
}
#endregion
public static explicit operator int( FInt src )
{
return (int)( src.RawValue >> SHIFT_AMOUNT );
}
public static explicit operator FInt( int src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( long src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( ulong src )
{
return FInt.Create( (long)src, true );
}
public static FInt operator <<( FInt one, int Amount )
{
return FInt.Create( one.RawValue << Amount, false );
}
public static FInt operator >>( FInt one, int Amount )
{
return FInt.Create( one.RawValue >> Amount, false );
}
public override bool Equals( object obj )
{
if ( obj is FInt )
return ( (FInt)obj ).RawValue == this.RawValue;
else
return false;
}
public override int GetHashCode()
{
return RawValue.GetHashCode();
}
public override string ToString()
{
return this.RawValue.ToString();
}
}
public struct FPoint
{
public FInt X;
public FInt Y;
public static FPoint Create( FInt X, FInt Y )
{
FPoint fp;
fp.X = X;
fp.Y = Y;
return fp;
}
public static FPoint FromPoint( Point p )
{
FPoint f;
f.X = (FInt)p.X;
f.Y = (FInt)p.Y;
return f;
}
public static Point ToPoint( FPoint f )
{
return new Point( f.X.IntValue, f.Y.IntValue );
}
#region Vector Operations
public static FPoint VectorAdd( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X + F2.X;
result.Y = F1.Y + F2.Y;
return result;
}
public static FPoint VectorSubtract( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X - F2.X;
result.Y = F1.Y - F2.Y;
return result;
}
public static FPoint VectorDivide( FPoint F1, int Divisor )
{
FPoint result;
result.X = F1.X / Divisor;
result.Y = F1.Y / Divisor;
return result;
}
#endregion
}
Based on the comments from ShuggyCoUk, I see that this is in Q12 format. That's reasonably precise for my purposes. Of course, aside from the bugfixes, I already had this basic format before I asked my question. What I was looking for were ways to calculate Sqrt, Atan2, Sin, and Cos in C# using a structure like this. There aren't any other things that I know of in C# that will handle this, but in Java I managed to find the MathFP library by Onno Hommes. It's a liberal source software license, so I've converted some of his functions to my purposes in C# (with a fix to atan2, I think). Enjoy:
#region PI, DoublePI
public static FInt PI = FInt.Create( 12868, false ); //PI x 2^12
public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
public static FInt PIOver180F = PI / (FInt)180; //PI / 180
#endregion
#region Sqrt
public static FInt Sqrt( FInt f, int NumberOfIterations )
{
if ( f.RawValue < 0 ) //NaN in Math.Sqrt
throw new ArithmeticException( "Input Error" );
if ( f.RawValue == 0 )
return (FInt)0;
FInt k = f + FInt.OneF >> 1;
for ( int i = 0; i < NumberOfIterations; i++ )
k = ( k + ( f / k ) ) >> 1;
if ( k.RawValue < 0 )
throw new ArithmeticException( "Overflow" );
else
return k;
}
public static FInt Sqrt( FInt f )
{
byte numberOfIterations = 8;
if ( f.RawValue > 0x64000 )
numberOfIterations = 12;
if ( f.RawValue > 0x3e8000 )
numberOfIterations = 16;
return Sqrt( f, numberOfIterations );
}
#endregion
#region Sin
public static FInt Sin( FInt i )
{
FInt j = (FInt)0;
for ( ; i < 0; i += FInt.Create( 25736, false ) ) ;
if ( i > FInt.Create( 25736, false ) )
i %= FInt.Create( 25736, false );
FInt k = ( i * FInt.Create( 10, false ) ) / FInt.Create( 714, false );
if ( i != 0 && i != FInt.Create( 6434, false ) && i != FInt.Create( 12868, false ) &&
i != FInt.Create( 19302, false ) && i != FInt.Create( 25736, false ) )
j = ( i * FInt.Create( 100, false ) ) / FInt.Create( 714, false ) - k * FInt.Create( 10, false );
if ( k <= FInt.Create( 90, false ) )
return sin_lookup( k, j );
if ( k <= FInt.Create( 180, false ) )
return sin_lookup( FInt.Create( 180, false ) - k, j );
if ( k <= FInt.Create( 270, false ) )
return sin_lookup( k - FInt.Create( 180, false ), j ).Inverse;
else
return sin_lookup( FInt.Create( 360, false ) - k, j ).Inverse;
}
private static FInt sin_lookup( FInt i, FInt j )
{
if ( j > 0 && j < FInt.Create( 10, false ) && i < FInt.Create( 90, false ) )
return FInt.Create( SIN_TABLE[i.RawValue], false ) +
( ( FInt.Create( SIN_TABLE[i.RawValue + 1], false ) - FInt.Create( SIN_TABLE[i.RawValue], false ) ) /
FInt.Create( 10, false ) ) * j;
else
return FInt.Create( SIN_TABLE[i.RawValue], false );
}
private static int[] SIN_TABLE = {
0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
4096
};
#endregion
private static FInt mul( FInt F1, FInt F2 )
{
return F1 * F2;
}
#region Cos, Tan, Asin
public static FInt Cos( FInt i )
{
return Sin( i + FInt.Create( 6435, false ) );
}
public static FInt Tan( FInt i )
{
return Sin( i ) / Cos( i );
}
public static FInt Asin( FInt F )
{
bool isNegative = F < 0;
F = Abs( F );
if ( F > FInt.OneF )
throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );
FInt f1 = mul( mul( mul( mul( FInt.Create( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 26353447 >> FInt.SHIFT_AMOUNT, false );
FInt f2 = PI / FInt.Create( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );
return isNegative ? f2.Inverse : f2;
}
#endregion
#region ATan, ATan2
public static FInt Atan( FInt F )
{
return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
}
public static FInt Atan2( FInt F1, FInt F2 )
{
if ( F2.RawValue == 0 && F1.RawValue == 0 )
return (FInt)0;
FInt result = (FInt)0;
if ( F2 > 0 )
result = Atan( F1 / F2 );
else if ( F2 < 0 )
{
if ( F1 >= 0 )
result = ( PI - Atan( Abs( F1 / F2 ) ) );
else
result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
}
else
result = ( F1 >= 0 ? PI : PI.Inverse ) / FInt.Create( 2, true );
return result;
}
#endregion
#region Abs
public static FInt Abs( FInt F )
{
if ( F < 0 )
return F.Inverse;
else
return F;
}
#endregion
There are a number of other functions in Dr. Hommes' MathFP library, but they were beyond what I needed, and so I have not taken the time to translate them to C# (that process was made extra difficult by the fact that he was using a long, and I am using the FInt struct, which makes the conversion rules are a bit challenging to see immediately).
The accuracy of these functions as they are coded here is more than enough for my purposes, but if you need more you can increase the SHIFT AMOUNT on FInt. Just be aware that if you do so, the constants on Dr. Hommes' functions will then need to be divided by 4096 and then multiplied by whatever your new SHIFT AMOUNT requires. You're likely to run into some bugs if you do that and aren't careful, so be sure to run checks against the built-in Math functions to make sure that your results aren't being put off by incorrectly adjusting a constant.
So far, this FInt logic seems as fast, if not perhaps a bit faster, than the equivalent built in .net functions. That would obviously vary by machine, since the fp coprocessor would determine that, so I have not run specific benchmarks. But they are integrated into my game now, and I've seen a slight decrease in processor utilization compared to before (this is on a Q6600 quad core -- about a 1% drop in usage on average).
Thanks again to everyone who commented for your help. No one pointed me directly to what I was looking for, but you gave me some clues that helped me find it myself on google. I hope this code turns out to be useful for someone else, since there doesn't seem to be anything comparable in C# posted publicly.