A lot of Win32 APIs take pointers to structs with specific layouts. Of these, a large subset follow a common pattern where the first DWORD has to be initialized to have the size of the struct before it is called. Sometimes they require a block of memory to be passed, into which they will write a struct, and the memory block must be of a size that is determined by first calling the same API with a NULL pointer and reading the return value to discover the correct size. Some APIs allocate a struct and return a pointer to it, such that the pointer must be deallocated with a second call.
I wouldn't be that surprised if the set of APIs that can be usefully called in one shot, with individual arguments convertable from a simple string representation, is quite small.
To make this idea generally applicable, we would have to go to quite an extreme:
typedef void DynamicFunction(size_t argumentCount, const wchar_t *arguments[],
size_t maxReturnValueSize, wchar_t *returnValue);
DynamicFunction *GenerateDynamicFunction(const wchar_t *code);
You would pass a simple snippet of code to GenerateDynamicFunction, and it would wrap that code in some standard boilerplate and then invoke a C compiler/linker to make a DLL from it (there are quite a few free options available), containing the function. It would then LoadLibrary
that DLL and use GetProcAddress
to find the function, and then return it. This would be expensive, but you would do it once and cache the resulting DynamicFunctionPtr for repeated use. You could do this dynamically by keeping pointers in a hashtable, keyed by the code snippets themselves.
The boilerplate might be:
#include <windows.h>
// and anything else that might be handy
void DynamicFunctionWrapper(size_t argumentCount, const wchar_t *arguments[],
size_t maxReturnValueSize, wchar_t *returnValue)
{
// --- insert code snipped here
}
So an example usage of this system would be:
DynamicFunction *getUserName = GenerateDynamicFunction(
"GetUserNameW(returnValue, (LPDWORD)(&maxReturnValueSize))");
wchar_t userName[100];
getUserName(0, NULL, sizeof(userName) / sizeof(wchar_t), userName);
You could enhance this by making GenerateDynamicFunction
accept the argument count, so it could generate a check at the start of the wrapper that the correct number of arguments has been passed. And if you put a hashtable in there to cache the functions for each encountered codesnippet, you could get close to your original example. The Call function would take a code snippet instead of just an API name, but would otherwise be the same. It would look up the code snippet in the hashtable, and if not present, it would call GenerateDynamicFunction and store the result in the hashtable for next time. It would then perform the call on the function. Example usage:
wchar_t userName[100];
Call("GetUserNameW(returnValue, (LPDWORD)(&maxReturnValueSize))",
0, NULL, sizeof(userName) / sizeof(wchar_t), userName);
Of course there wouldn't be much point doing any of this unless the idea was to open up some kind of general security hole. e.g. to expose Call
as a webservice. The security implications exist for your original idea, but are less apparent simply because the original approach you suggested wouldn't be that effective. The more generally powerful we make it, the more of a security problem it would be.
Update based on comments:
The .NET framework has a feature called p/invoke, which exists precisely to solve your problem. So if you are doing this as a project to learn about stuff, you could look at p/invoke to get an idea of how complex it is. You could possibly target the .NET framework with your scripting language - instead of interpreting scripts in real time, or compiling them to your own bytecode, you could compile them to IL. Or you could host an existing scripting language from the many already available on .NET.