This code compiles and runs under GCC with -Wall.
#include <stdio.h>
struct event_cb;
typedef void (*event_cb_t)(const struct event_cb *evt, void *user_data);
struct event_cb
{
event_cb_t cb;
void *data;
};
static struct event_cb saved = { 0, 0 };
void event_cb_register(event_cb_t cb, void *user_data)
{
saved.cb = cb;
saved.data = user_data;
}
static void my_event_cb(const struct event_cb *evt, void *data)
{
printf("in %s\n", __func__);
printf("data1: %s\n", (const char *)data);
printf("data2: %s\n", (const char *)evt->data);
}
int main(void)
{
char my_custom_data[40] = "Hello!";
event_cb_register(my_event_cb, my_custom_data);
saved.cb(&saved, saved.data);
return 0;
}
You probably need to review whether the call back function gets the whole struct event_cb or not - usually, you'd just pass the data because, as demonstrated, otherwise you have two sources of the same information (and a spare copy of the pointer to the function that you're in). There is a lot of cleanup that can be done on this - but it does work.
A question in the comments asks: Is this a good example of a callback?
Succinctly, no - but in part because there isn't sufficient infrastructure here.
In a sense, you can think of the comparison function passed to the qsort()
or bsearch()
functions as a callback. It is a pointer to a function that is passed into the generic function that does what the generic function cannot do for itself.
Another example of a callback is a signal handler function. You tell the system to call your function when the event - a signal - occurs. You set up the mechanisms ahead of time so that when the system needs to call a function, it knows which function to call.
The example code is attempting to provide a more elaborate mechanism - a callback with a context. In C++, this would perhaps be a functor.
Some of the code I work with has very fussy requirements about memory management - when used in a particular context. So, for testing, I use malloc()
et al, but in production, I have to set the memory allocators to the specialized allocators. Then I provide a function call in the package so that the fussy code can override the default memory allocators with its own surrogate versions - and provided the surrogates work OK, the code will behave as before. Those are a form of callback - again, a form that does not need much (or anything) in the way of user context data.
Windowing systems have event handlers (callbacks) that are registered and that the GUI main event loop will call when events occur. Those usually need user context as well as the event-specific information provided by the GUI system.