You can do this very fast in machine code by subtracting repeatedly. Basically you have a procedure like:
set accumulator to N
subtract D
if carry flag is set then it is not divisible
if zero flag is set then it is divisible
otherwise repeat subtraction until one of the above occurs
The 8 bit version would be something like:
DIVISIBLE_TEST:
LD B,10
LD A,100
DIVISIBLE_TEST_LOOP:
SUB B
JR C, $END_DIVISIBLE_TEST
JR Z, $END_DIVISIBLE_TEST
JR $DIVISIBLE_TEST_LOOP
END_DIVISIBLE_TEST:
LD B,A
LD C,0
RET
Now, you can call from basic using USR. What USR returns is whatever's in the BC register pair, so you would probably want to do something like:
REM poke the memory addresses with the operands to load the registers
POKE X+1, D
POKE X+3, N
LET r = USR X
IF r = 0 THEN GOTO isdivisible
IF r <> 0 THEN GOTO isnotdivisible
This is an introduction I wrote to Z80 which should help you figure this out. This will explain the flags if you're not familiar with them.
There's a load more links to good Z80 stuff from the main site although it is Spectrum rather than ZX81 focused.
A 16 bit version would be quite similar but using register pair operations. If you need to go beyond 16 bits it would get a bit more convoluted.
How you load this is up to you - but the traditional method is using DATA statements and POKEs. You may prefer to have an assembler figure out the machine code for you though!