The IV allows for plaintext to be encrypted such that the encrypted text is harder to decrypt for an attacker. Each bit of IV you use will double the possibilities of encrypted text from a given plain text.
For example, let's encrypt 'hello world' using an IV one character long. The IV is randomly selected to be 'x'. The text that is then encrypted is then 'xhello world', which yeilds, say, 'asdfghjkl'. If we encrypt it again, first generate a new IV--say we get 'b' this time--and encrypt like normal (thus encrypting 'bhello world'). This time we get 'qwertyuio'.
The point is that the attacker doesn't know what the IV is and therefore must compute every possible IV for a given plain text to find the matching cipher text. In this way, the IV acts like a password salt. Most commonly, an IV is used with a chaining cipher (either a stream or block cipher). In a chaining block cipher, the result of each block of plain text is fed to the cipher algorithm to find the cipher text for the next block. In this way, each block is chained together.
So, if you have a random IV used to encrypt the plain text, how do you decrypt it? Simple. Pass the IV (in plain text) along with your encrypted text. Using our fist example above, the final cipher text would be 'xasdfghjkl' (IV + cipher text).
Yes you should use an IV, but be sure to choose it properly. Use a good random number source to make it. Don't ever use the same IV twice. And never use a constant IV.
The Wikipedia article on initialization vectors provides a general overview.