This feature was in Spec#. They defaulted to nullable references and used ! to indicate non-nullables. This was because they wanted backward compatibility.
In my dream language (of which I'd probably be the only user!) I'd make the same choice as you, non-nullable by default.
I would also make it illegal to use the . operator on a nullable reference (or anything else that would dereference it). How would you use them? You'd have to convert them to non-nullables first. How would you do this? By testing them for null.
In Java and C#, the if
statement can only accept a bool
test expression. I'd extend it to accept the name of a nullable reference variable:
if (myObj)
{
// in this scope, myObj is non-nullable, so can be used
}
This special syntax would be unsurprising to C/C++ programmers. I'd prefer a special syntax like this to make it clear that we are doing a check that modifies the type of the name myObj
within the truth-branch.
I'd add a further bit of sugar:
if (SomeMethodReturningANullable() into anotherObj)
{
// anotherObj is non-nullable, so can be used
}
This just gives the name anotherObj
to the result of the expression on the left of the into
, so it can be used in the scope where it is valid.
I'd do the same kind of thing for the ?:
operator.
string message = GetMessage() into m ? m : "No message available";
Note that string message
is non-nullable, but so are the two possible results of the test above, so the assignment is value.
And then maybe a bit of sugar for the presumably common case of substituting a value for null:
string message = GetMessage() or "No message available";
Obviously or
would only be validly applied to a nullable type on the left side, and a non-nullable on the right side.
(I'd also have a built-in notion of ownership for instance fields; the compiler would generate the IDisposable.Dispose
method automatically, and the ~Destructor
syntax would be used to augment Dispose
, exactly as in C++/CLI.)
Spec# had another syntactic extension related to non-nullables, due to the problem of ensuring that non-nullables had been initialized correctly during construction:
class SpecSharpExampleClass
{
private string! _nonNullableExampleField;
public SpecSharpExampleClass(string s)
: _nonNullableExampleField(s)
{
}
}
In other words, you have to initialize fields in the same way as you'd call other constructors with base
or this
- unless of course you initialize them directly next to the field declaration.