This is very implementation-dependent, but the following is one possible implementation:
When a file is a first memory-mapped, the data isn't stored anywhere at first, it's still on disk. The virtual memory manager (VMM) allocates a range of virtual memory addresses to the process for the file, but those addresses aren't immediately added to the page table.
When the program first tries to read or write to one of those addresses, a page fault occurs. The OS catches the page fault, figures out that that address corresponds to a memory-mapped file, and reads the appropriate disk sector into an internal kernel buffer. Then, it maps the kernel buffer into the process's address space, and restarts the user instruction that caused the page fault. If the faulting instruction was a read, we're all done for now. If it was a write, the data is written to memory, and the page is marked as dirty. Subsequent reads or writes to data within the same page do not require reading/writing to/from disk, since the data is in memory.
When the file is flushed or closed, any pages which have been marked dirty are written back to disk.
Using memory-mapped files is advantageous for programs which read or write disk sectors in a very haphazard manner. You only read disk sectors which are actually used, instead of reading the entire file.