Alexander's solution is a fine one but does not suffice in certain situations. Suppose you wish to set up a TClassFactory class where TClass references can be stored during runtime and an arbitrary number of instances retrieved later on.
Such a class factory would never know anything about the actual types of the classes it holds and thus cannot cast them into their according meta classes. To invoke the correct constructors in such cases, the following approach will work.
First, we need a simple demo class (don't mind the public fields, it's just for demonstration purposes).
interface
uses
RTTI;
type
THuman = class(TObject)
public
Name: string;
Age: Integer;
constructor Create(); virtual;
end;
implementation
constructor THuman.Create();
begin
Name:= 'John Doe';
Age:= -1;
end;
Now we instantiate an object of type THuman purely by RTTI and with the correct constructor call.
procedure CreateInstance();
var
someclass: TClass;
c: TRttiContext;
t: TRttiType;
v: TValue;
human1, human2, human3: THuman;
begin
someclass:= THuman;
// Invoke RTTI
c:= TRttiContext.Create;
t:= c.GetType(someclass);
// Variant 1a - instantiates a THuman object but calls constructor of TObject
human1:= t.AsInstance.MetaclassType.Create;
// Variant 1b - same result as 1a
human2:= THuman(someclass.Create);
// Variant 2 - works fine
v:= t.GetMethod('Create').Invoke(t.AsInstance.MetaclassType,[]);
human3:= THuman(v.AsObject);
// free RttiContext record (see text below) and the rest
c.Free;
human1.Destroy;
human2.Destroy;
human3.Destroy;
end;
You will find that the objects "human1" and "human2" have been initialized to zero, i.e., Name='' and Age=0, which is not what we want. The object human3 instead holds the default values provided in the constructor of THuman.
Note, however, that this method requires your classes to have constructor methods with not parameters. All the above was not conceived by me but explained brillantly and in much more detail (e.g., the c.Free part) in Rob Love's Tech Corner.