I should preface all my comments by saying, I am still learning assmebly.
I will ignore the section initialization. A explanation for the section initialization and basically everything else I cover can be found here:
http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
The ebp register is the stack frame base pointer, hence the BP. It stores a pointer to the beginning of the current stack.
The esp register is the stack pointer. It holds the memory location of the top of the stack. Each time we push something on the stack esp is updated so that it always points to an address the top of the stack.
So ebp points to the base and esp points to the top. So the stack looks like:
esp -----> 000a3 fa
000a4 21
000a5 66
000a6 23
esb -----> 000a7 54
If you push e4 on the stack this is what happens:
esp -----> 000a2 e4
000a3 fa
000a4 21
000a5 66
000a6 23
esb -----> 000a7 54
Notice that the stack grows toward lower addresses, this fact will be important below.
The first two steps are known as the procedure prolog or more commonly the function prolog, they prepare the stack for use by local variables. See procedure prolog quote at the bottom.
In step 1 we save the pointer to the old stack frame on the stack by calling,
pushl %ebp. Since main is the first function called, I have no idea what the previous value of %ebp points too.
Step 2, We are entering a new stack frame because we are entering a new function (main). Therefore, we must set a new stack frame base pointer. We use the value in esp to be the beginning of our stack frame.
Step 3. Allocates 8 bytes of space on the stack. As we mentioned above, the stack grows toward lower addresses thus, subtracting by 8, moves the top of the stack by 8 bytes.
Step 4; Alligns the stack, I've found different opinions on this. I'm not really sure exactly what this is done. I suspect it is done to allow large instructions (SIMD) to be allocated on the stack,
http://gcc.gnu.org/ml/gcc/2008-01/msg00282.html
This code "and"s ESP with 0xFFFF0000,
aligning the stack with the next
lowest 16-byte boundary. An
examination of Mingw's source code
reveals that this may be for SIMD
instructions appearing in the "_main"
routine, which operate only on aligned
addresses. Since our routine doesn't
contain SIMD instructions, this line
is unnecessary.
http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
Steps 5 through 11 seem to have no purpose to me. I couldn't find any explanation on google. Could someone who really knows this stuff provide a deeper understanding. I've heard rumors that this stuff is used for C's exception handling.
Step 5, stores the return value of main 0, in eax.
Step 6 and 7 we add 15 in hex to eax for unknown reason. eax = 01111 + 01111 = 11110
Step 8 we shift the bits of eax 4 bits to the right. eax = 00001 because the last bits are shift off the end 00001 | 111.
Step 9 we shift the bits of eax 4 bits to the left, eax = 10000.
Steps 10 and 11 moves the value in the first 4 allocated bytes on the stack into eax and then moves it from eax back.
Steps 12 and 13 setup the c library.
We have reached the function epilogue. That is, the part of the function which returns the stack pointers, esp and ebp to the state they were in before this function was called.
Step 14, leave sets esp to the value of ebp, moving the top of stack to the address it was before main was called. Then it sets ebp to point to the address we saved on the top of the stack during step 1.
Leave can just be replaced with the following instructions:
mov %ebp, %esp
pop %ebp
Step 15, returns and exits the function.
1. pushl %ebp
2. movl %esp, %ebp
3. subl $8, %esp
4. andl $-16, %esp
5. movl $0, %eax
6. addl $15, %eax
7. addl $15, %eax
8. shrl $4, %eax
9. sall $4, %eax
10. movl %eax, -4(%ebp)
11. movl -4(%ebp), %eax
12. call __alloca
13. call ___main
14. leave
15. ret
Procedure Prolog:
The first thing a function has to do
is called the procedure prolog. It
first saves the current base pointer
(ebp) with the instruction pushl %ebp
(remember ebp is the register used for
accessing function parameters and
local variables). Now it copies the
stack pointer (esp) to the base
pointer (ebp) with the instruction
movl %esp, %ebp. This allows you to
access the function parameters as
indexes from the base pointer. Local
variables are always a subtraction
from ebp, such as -4(%ebp) or
(%ebp)-4 for the first local variable,
the return value is always at 4(%ebp)
or (%ebp)+4, each parameter or
argument is at N*4+4(%ebp) such as
8(%ebp) for the first argument while
the old ebp is at (%ebp).
http://www.milw0rm.com/papers/52
A really great stack overflow thread exists which answers much of this question.
http://stackoverflow.com/questions/499842/why-are-there-extra-instructions-in-my-gcc-output
A good reference on x86 machine code instructions can be found here:
http://programminggroundup.blogspot.com/2007/01/appendix-b-common-x86-instructions.html
This a lecture which contains some of the ideas used below:
http://csc.colstate.edu/bosworth/cpsc5155/Y2006_TheFall/MySlides/CPSC5155_L23.htm
Here is another take on answering your question:
http://www.phiral.net/linuxasmone.htm
None of these sources explain everything.