I'd be tempted to run the soundex algorithm over a dictionary of English words and cache the results, then soundex your candidate string and match against the cache.
Depending on performance requirements, you could work out a distance algorithm for soundex codes and accept strings within a certain tolerance.
Soundex is very easy to implement - see Wikipedia for a description of the algorithm.
An example implementation of what you want to do would be:
def soundex(name, len=4):
digits = '01230120022455012623010202'
sndx = ''
fc = ''
for c in name.upper():
if c.isalpha():
if not fc: fc = c
d = digits[ord(c)-ord('A')]
if not sndx or (d != sndx[-1]):
sndx += d
sndx = fc + sndx[1:]
sndx = sndx.replace('0','')
return (sndx + (len * '0'))[:len]
real_words = load_english_dictionary()
soundex_cache = [ soundex(word) for word in real_words ]
if soundex(candidate) in soundex_cache:
print "keep"
else:
print "discard"
Obviously you'll need to provide an implementation of read_english_dictionary.
EDIT: Your example of "KEAL" will be fine, since it has the same soundex code (K400) as "KEEL". You may need to log rejected words and manually verify them if you want to get an idea of failure rate.