I have a thread which produces data in the form of simple object (record). The thread may produce a thousand records for each one that successfully passes a filter and is actually enqueued. Once the object is enqueued it is read-only.
I have one lock, which I acquire once the record has passed the filter, and I add the item to the back of the producer_queue.
On the consumer thread, I acquire the lock, confirm that the producer_queue is not empty, set consumer_queue to equal producer_queue, create a new (empty) queue, and set it on producer_queue. Without any further locking I process consumer_queue until it's empty and repeat.
Everything works beautifully on most machines, but on one particular dual-quad server I see in ~1/500k iterations an object that is not fully initialized when I read it out of consumer_queue. The condition is so fleeting that when I dump the object after detecting the condition the fields are correct 90% of the time.
So my question is this: how can I assure that the writes to the object are flushed to main memory when the queue is swapped?
Edit:
On the producer thread: (producer_queue above is m_fillingQueue; consumer_queue above is m_drainingQueue)
private void FillRecordQueue() {
while (!m_done) {
int count;
lock (m_swapLock) {
count = m_fillingQueue.Count;
}
if (count > 5000) {
Thread.Sleep(60);
} else {
DataRecord rec = GetNextRecord();
if (rec == null) break;
lock (m_swapLock) {
m_fillingQueue.AddLast(rec);
}
}
}
}
In the consumer thread:
private DataRecord Next(bool remove) {
bool drained = false;
while (!drained) {
if (m_drainingQueue.Count > 0) {
DataRecord rec = m_drainingQueue.First.Value;
if (remove) m_drainingQueue.RemoveFirst();
if (rec.Time < FIRST_VALID_TIME) {
throw new InvalidOperationException("Detected invalid timestamp in Next(): " + rec.Time + " from record " + rec);
}
return rec;
} else {
lock (m_swapLock) {
m_drainingQueue = m_fillingQueue;
m_fillingQueue = new LinkedList<DataRecord>();
if (m_drainingQueue.Count == 0) drained = true;
}
}
}
return null;
}
The consumer is rate-limited, so it can't get ahead of the consumer.
The behavior I see is that sometimes the Time field is reading as DateTime.MinValue; by the time I construct the string to throw the exception, however, it's perfectly fine.