First of all, the title is very bad, due to my lack of a concise vocabulary. I'll try to describe what I'm doing and then ask my question again.
Background Info
Let's say I have 2 matrices of size n x m, where n is the number of experimental observation vectors, each of length m (the time series over which the observations were collected). One of these matrices is the original matrix, called S, the other which is a reconstructed version of S, called Y. 
Let's assume that Y properly reconstructs S. However due to the limitations of the reconstruction algorithm, Y can't determine the true amplitude of the vectors in S, nor is it guaranteed to provide the proper sign for those vectors (the vectors might be flipped). Also, the order of the observation vectors in Y might not match the original ordering of the corresponding vectors in S.
My Question
Is there an algorithm or technique to generate a new matrix which is a 'realignment' of Y to S, so that when Y and S are normalized, the algorithm can (1) find the vectors in Y that match the vectors in S and restore the original ordering of the vectors and (2) likewise match the signs of the vectors?
As always, I really appreciate all help given. Thanks!