Yes. Here's a way to do it without the bitcount in lg(n)
, if you know the integer in question is a power of 2.
unsigned int x = ...;
static const unsigned int arr[] = {
// Each element in this array alternates a number of 1s equal to
// consecutive powers of two with an equal number of 0s.
0xAAAAAAAA, // 0b10101010.. // one 1, then one 0, ...
0xCCCCCCCC, // 0b11001100.. // two 1s, then two 0s, ...
0xF0F0F0F0, // 0b11110000.. // four 1s, then four 0s, ...
0xFF00FF00, // 0b1111111100000000.. // [The sequence continues.]
0xFFFF0000
}
register unsigned int reg = (x & arr[0]) != 0;
reg |= ((x & arr[4]) != 0) << 4;
reg |= ((x & arr[3]) != 0) << 3;
reg |= ((x & arr[2]) != 0) << 2;
reg |= ((x & arr[1]) != 0) << 1;
// reg now has the value of lg(x).
In each of the reg |=
steps, we successively test to see if any of the bits of x
are shared with alternating bitmasks in arr
. If they are, that means that lg(x)
has bits which are in that bitmask, and we effectively add 2^k
to reg
, where k
is the log of the length of the alternating bitmask. For example, 0xFF00FF00 is an alternating sequence of 8 ones and zeroes, so k
is 3 (or lg(8)
) for this bitmask.
Essentially, each reg |= ((x & arr[k]) ...
step (and the initial assignment) tests whether lg(x)
has bit k
set. If so, we add it to reg
; the sum of all those bits will be lg(x)
.
That looks like a lot of magic, so let's try an example. Suppose we want to know what power of 2 the value 2,048 is:
// x = 2048
// = 1000 0000 0000
register unsigned int reg = (x & arr[0]) != 0;
// reg = 1000 0000 0000
& ... 1010 1010 1010
= 1000 0000 0000 != 0
// reg = 0x1 (1) // <-- Matched! Add 2^0 to reg.
reg |= ((x & arr[4]) != 0) << 4;
// reg = 0x .. 0800
& 0x .. 0000
= 0 != 0
// reg = reg | (0 << 4) // <--- No match.
// reg = 0x1 | 0
// reg remains 0x1.
reg |= ((x & arr[3]) != 0) << 3;
// reg = 0x .. 0800
& 0x .. FF00
= 800 != 0
// reg = reg | (1 << 3) // <--- Matched! Add 2^3 to reg.
// reg = 0x1 | 0x8
// reg is now 0x9.
reg |= ((x & arr[2]) != 0) << 2;
// reg = 0x .. 0800
& 0x .. F0F0
= 0 != 0
// reg = reg | (0 << 2) // <--- No match.
// reg = 0x9 | 0
// reg remains 0x9.
reg |= ((x & arr[1]) != 0) << 1;
// reg = 0x .. 0800
& 0x .. CCCC
= 800 != 0
// reg = reg | (1 << 1) // <--- Matched! Add 2^1 to reg.
// reg = 0x9 | 0x2
// reg is now 0xb (11).
We see that the final value of reg
is 2^0 + 2^1 + 2^3, which is indeed 11.