This greedy algorithm appears to produce minimal sequences.
- Make a collection of all permutations.
- Remove the first permutation from the collection.
- Let a = the first permutation.
- Find the sequence in the collection that has the greatest overlap with the end of a. If there is a tie, choose the sequence is first in lexicographic order. Remove the chosen sequence from the collection and add the non-overlapping part to the end of a. Repeat this step until the collection is empty.
The curious tie-breaking step is necessary for correctness; breaking the tie at random instead seems to result in longer strings.
I verified (by writing a much longer, slower program) that the answer this algorithm gives for length 4, 123412314231243121342132413214321, is indeed the shortest answer.
The algortihm is O(n!2).
An implementation in Python:
import itertools
def costToAdd(a, b):
for i in range(1, len(b)):
if a.endswith(b[:-i]):
return i
return len(b)
def stringContainingAllPermutationsOf(s):
perms = set(''.join(tpl) for tpl in itertools.permutations(s))
perms.remove(s)
a = s
while perms:
cost, next = min((costToAdd(a, x), x) for x in perms)
perms.remove(next)
a += next[-cost:]
return a
The length of the strings generated by this function are 1, 3, 9, 33, 153, 873, 5913, ... which appears to be this integer sequence.
I have a hunch you can do better than O(n!2).