It's probably not the case in the code that you referenced, but you also need a double pointer any time you want to pass a pointer to a function and have changes to that pointer be reflected outside the scope of that function.
For example, if you were trying to rewrite the strcpy function so that the user did not have to allocate memory for the source string, you might try something like the following:
void MyStrcpy(char* dst, char* src){
dst = (char*)malloc(sizeof(char)*(strlen(src)+1));
for(int i=0;i<=strlen(src);i++)
dst[i] = src[i];
printf("src: %s ", src);
printf("dst: %s\n\n", dst);
}
If you were then to call that function,
int main() {
char *foo = "foo";
char *newPtr;
MyStrcpy(newPtr, foo);
printf("foo: %s ", foo);
printf("new: %s\n", newPtr);
}
your output would be as follows:
src: foo
dst: foo
foo: foo
new:
You might also get a seg fault when trying to print newPtr, depending your system. The reason for this behavior is the exact same as the reason you wouldn't expect a change to an int that was passed by value to a function to be reflected outside of that function: what you are passing to MyStrcpy is simply the memory address that newPtr references. When you malloc the space for dst inside the function, you are changing the address dst points to. This change will not be reflected outside of the scope of MyStrcpy!
Instead, if you wanted newPtr to point to the new allocated chunk of memory, you need to have dst be a pointer to a pointer, a char **.
void MyStrcpy(char** dst, char* src){
*dst = (char*)malloc(sizeof(char)*(strlen(src)+1));
for(int i=0;i<=strlen(src);i++)
(*dst)[i] = src[i];
printf("src: %s ", src);
printf("dst: %s\n\n", *dst);
}
Now, if you were to call that function:
int main() {
char *foo = "foo";
char *newPtr;
MyStrcpy(&newPtr, foo);
printf("foo: %s ", foo);
printf("new: %s\n", newPtr);
}
You would get your expected output:
src: foo
dst: foo
foo: foo
new: foo
Hope that helps!