In general, equivalent key sizes does not imply equivalent security, for a variety of reasons:
First, it's simply the case that some algorithms are have known attacks where others do not. The size of the key is just the upper bound of the effort it would take to break the cipher; in the worst case, you can always try every possible key and succeed (on average) after checking half the key space. That doesn't mean this is the best possible attack. Here's an example: AES with 128 bit keys uses 10 rounds. If you used AES with a 128 bit key, but only one round, it would be trivially breakable even though the key is the same size. For many algorithms, there are known attacks which can break the algorithm much faster the searching the entire key space.
In the case of block ciphers, there are other considerations as well. That is because block ciphers process data in chunks of bits. There are various combinatorial properties which come into play after you've started encrypting large amounts of data. For instance using the common CBC mode, you start running into problems after encrypting about 2^(n/2) blocks (this problem is intrinsic to CBC). For a 64 bit cipher like RC2, that means 2^32 64 bit blocks, or 32 GiB, which while large is quite easy to imagine (eg you encrypt a disk image with it). Whereas for a 128 bit cipher like AES, the problem only starts to crop up after about 2^64 128 bit blocks, or roughly 295 exabytes. In a scenario like this, AES with a 64 bit key would in fact be much more secure than RC2 with a 64 bit key.
Here we get to the epistemology portion of the answer: even if there are no known attacks, it doesn't mean that there are no attacks possible. RC2 is quite old and is rarely used; even when it was a fairly current cipher there was rather less analysis of it than, say, DES. It's quite likely that nobody in the last 5 years has bothered to go back and look at how to break RC2 using the latest attack techniques, simply because in the relatively academic publish-or-perish model that modern public cryptography research operates under, there is less gain to be had; it's much much better if you're seeking tenure (or looking to beef up your reputation to get more consulting work) to publish even a very marginal improvement on attacking AES than it would be to utterly demolish RC2, because nobody uses it anymore.
And with a 64 bit key, you've immediately constrained yourself to that upper bound, and 2^64 effort is really quite low; possibly within reach not just for intelligence agencies but even reasonably sized corporations (or botnet herders).
Finally, I'll point out that RC2 was designed to be fast on 286/386-era processors. On modern machines it is substantially (roughly 4-6x) slower than AES or similar ciphers designed in the last 10 years.
I really can't see any upside to using RC2 for anything, the only use I can imagine that would make sense would be for compatibility with some ancient (in computer time) system. Use AES (or one of the 4 other AES finalists if you must).