views:

77

answers:

3

I have several numbers in an array

var numArr = [1, 3, 5, 9];

I want to cycle through that array and multiply every unique 3 number combination as follows:

1 * 3 * 5 = 
1 * 3 * 9 = 
1 * 5 * 9 = 
3 * 5 * 9 =

Then return an array of all the calculations

var ansArr = [15,27,45,135];

Anyone have an elegant solution? Thanks in advance.

A: 

I think this should work:

var a = [1, 3, 5, 9];
var l = a.length;
var r = [];
for (var i = 0; i < l; ++i) {
  for (var j = i + 1; j < l; ++j) {
    for (var k = j + 1; k < l; ++k) {
      r.push(a[i] * a[j] * a[k]);
    }
  }
}

Edit

Just for my own edification, I figured out a generic solution that uses loops instead of recursion. It's obvious downside is that it's longer thus slower to load or to read. On the other hand (at least on Firefox on my machine) it runs about twice as fast as the recursive version. However, I'd only recommend it if you're finding combinations for large sets, or finding combinations many times on the same page. Anyway, in case anybody's interested, here's what I came up with.

function combos(superset, size) {
  var result = [];
  if (superset.length < size) {return result;}
  var done = false;
  var current_combo, distance_back, new_last_index;
  var indexes = [];
  var indexes_last = size - 1;
  var superset_last = superset.length - 1;

  // initialize indexes to start with leftmost combo
  for (var i = 0; i < size; ++i) {
    indexes[i] = i;
  }

  while (!done) {
    current_combo = [];
    for (i = 0; i < size; ++i) {
      current_combo.push(superset[indexes[i]]);
    }
    result.push(current_combo);
    if (indexes[indexes_last] == superset_last) {
      done = true;
      for (i = indexes_last - 1; i > -1 ; --i) {
        distance_back = indexes_last - i;
        new_last_index = indexes[indexes_last - distance_back] + distance_back + 1;
        if (new_last_index <= superset_last) {
          indexes[indexes_last] = new_last_index;
          done = false;
          break;
        }
      }
      if (!done) {
        ++indexes[indexes_last - distance_back];
        --distance_back;
        for (; distance_back; --distance_back) {
          indexes[indexes_last - distance_back] = indexes[indexes_last - distance_back - 1] + 1;
        }
      }
    }
    else {++indexes[indexes_last]}
  }
  return result;
}

function products(sets) {
  var result = [];
  var len = sets.length;
  var product;
  for (var i = 0; i < len; ++i) {
    product = 1;
    inner_len = sets[i].length;
    for (var j = 0; j < inner_len; ++j) {
      product *= sets[i][j];
    }
    result.push(product);
  }
  return result;
}

console.log(products(combos([1, 3, 5, 7, 9, 11], 3)));
Sid_M
@Sid_M - Perfect! Thanks a lot
DaveKingsnorth
@Sid_M - If I wanted to get all 2 number combinations or 5 number combinations (if I had a longer array), is there a solution where I can specify that value as a variable (I'm talking about specifying the length of the combinations).
DaveKingsnorth
@DaveKingsnorth if you want to vary that, then my solution's too specific. See Marcelo's more generic solution.
Sid_M
@Sid_M - Your solution actually answers my original question but Marcelo's is exactly what I was after. Thanks for your input.
DaveKingsnorth
+1  A: 

A general-purpose algorithm for generating combinations is as follows:

function combinations(numArr, choose, callback) {
    var n = numArr.length;
    var c = [];
    var inner = function(start, choose_) {
        if (choose_ == 0) {
            callback(c);
        } else {
            for (var i = start; i <= n - choose_; ++i) {
                c.push(numArr[i]);
                inner(i + 1, choose_ - 1);
                c.pop();
            }
        }
    }
    inner(0, choose);
}

In your case, you might call it like so:

function product(arr) {
    p = 1;
    for (var i in arr) {
        p *= arr[i];
    }
    return p;
}

var ansArr = [];

combinations(
    [1, 3, 5, 7, 9, 11], 3,
    function output(arr) {
        ansArr.push(product(arr));
    });

document.write(ansArr);

...which, for the given input, yields this:

15,21,27,33,35,45,55,63,77,99,105,135,165,189,231,297,315,385,495,693
Marcelo Cantos
This is awesome. Thanks a lot!
DaveKingsnorth
A: 

A recursive function to do this when you need to select k numbers among n numbers. Have not tested. Find if there is any bug and rectify it :-)

var result = [];

foo(arr, 0, 1, k, n); // initial call

function foo(arr, s, mul, k, n) {
    if (k == 1) {
        result.push(mul);
        return;
    }

    var i;
    for (i=s; i<=n-k; i++) {
        foo(arr, i+1, mul*arr[i], k-1, n-i-1);
    }
}
Niraj Nawanit
@ Niraj - Can you explain what each of the parameters are please?
DaveKingsnorth
This is a recursive function.1) First parameter is array arr.2) Second parameter is integer s. Each call calculates values for part of the array starting from index s. Recursively I am increasing s and so array for each call is recursively becoming smaller.3) Third parameter is the value that is being calculated recursively and is being passed in the recursive call. When k becomes 1, it gets added in the result array.4) k in the size of combination desired. It decreases recursively and when becomes 1, output appended in result array.5) n is size of array arr. Actually n = arr.length
Niraj Nawanit