When should I use a ThreadLocal
variable?
How is it used?
When should I use a ThreadLocal
variable?
How is it used?
The documentation says it very well: "each thread that accesses [a thread-local variable] (via its get or set method) has its own, independently initialized copy of the variable".
You use one when each thread must have its own copy of something. By default, data is shared between threads.
In Java, if you have a datum that can vary per-thread, your choices are to pass that datum around to every method that needs (or may need) it, or to associate the datum with the thread. Passing the datum around everywhere may be workable if all your methods already need to pass around a common "context" variable.
If that's not the case, you may not want to clutter up your method signatures with an additional parameter. In a non-threaded world, you could solve the problem with the Java equivalent of a global variable. In a threaded word, the equivalent of a global variable is a thread-local variable.
One possible (and common) use is when you have some object that is not thread-safe, but you want to avoid synchronizing access to that object (I'm looking at you, SimpleDateFormat). Instead, give each thread its own instance of the object.
For example:
public class Foo
{
// SimpleDateFormat is not thread-safe, so give one to each thread
private static final ThreadLocal<SimpleDateFormat> formatter = new ThreadLocal<SimpleDateFormat>(){
@Override
protected SimpleDateFormat initialValue()
{
return new SimpleDateFormat("yyyyMMdd HHmm");
}
};
public String formatIt(Date date)
{
return formatter.get().format(date);
}
}
Since a ThreadLocal
is a reference to data within a given Thread
, you can end up with classloading leaks when using ThreadLocal
s in application servers which use thread pools. You need to be very careful about cleaning up any ThreadLocal
s you get()
or set()
by using the ThreadLocal
's remove()
method.
If you do not clean up when you're done, any references it holds to classes loaded as part of a deployed webapp will remain in the permanent heap and will never get garbage collected. Redeploying/undeploying the webapp will not clean up each Thread
's reference to your webapp's class(es) since the Thread
is not something owned by your webapp. Each successive deployment will create a new instance of the class which will never be garbage collected.
You will end up with out of memory exceptions due to java.lang.OutOfMemoryError: PermGen space
and after some googling will probably just increase -XX:MaxPermSize
instead of fixing the bug.
If you do end up experiencing these problems, you can determine which thread and class is retaining these references by using Eclipse's Memory Analyzer and/or by following Frank Kieviet's guide and followup.
Update: Re-discovered Alex Vasseur's blog entry that helped me track down some ThreadLocal
issues I was having.
Essentially, when you need a variable's value to depend on the current thread and it isn't convenient for you to attach the value to the thread in some other way (for example, subclassing thread).
A typical case is where some other framework has created the thread that your code is running in, e.g. a servlet container, or where it just makes more sense to use ThreadLocal because your variable is then "in its logical place" (rather than a variable hanging from a Thread subclass or in some other hash map).
On my web site, I have some further discussion and examples of when to use ThreadLocal that may also be of interest.
Some people advocate using ThreadLocal as a way to attach a "thread ID" to each thread in certain concurrent algorithms where you need a thread number (see e.g. Herlihy & Shavit). In such cases, check that you're really getting a benefit!
As was mentioned by @unknown (google), it's usage is to define a global variable in which the value referenced can be unique in each thread. It's usages typically entails storing some sort of contextual information that is linked to the current thread of execution.
We use it in a JEE environment to pass user identity to classes that are not JEE aware (don't have access to HttpSession, or the ejb SessionContext). This way the code, which makes usage of identity for security based operations, can access the identity from anywhere, without having to explicitly pass it in every method call.
The request/response cycle of operations in most JEE calls makes this type of usage easy since it gives well defined entry and exit points to set and unset the ThreadLocal.
Many frameworks use ThreadLocals to maintain some context related to the current thread. For example when the current transaction is stored in a ThreadLocal, you don't need to pass it as a parameter through every method call, in case someone down the stack needs access to it. Web applications might store information about the current request and session in a ThreadLocal, so that the application has easy access to them. With Guice you can use ThreadLocals when implementing custom scopes for the injected objects (Guice's default servlet scopes most probably use them as well).
ThreadLocals are one sort of global variables (although slightly less evil because they are restricted to one thread), so you should be careful when using them to avoid unwanted side-effects and memory leaks. Design your APIs so that the ThreadLocal values will always be automatically cleared when they are not anymore needed and that incorrect use of the API won't be possible (for example like this). ThreadLocals can be used to make the code cleaner, and in some rare cases they are the only way to make something work (my current project had two such cases; they are documented here under "Static fields and global variables").