Hi all, I am currently busy on writing a small ball physics engine for my programming course in Win32 API and c++. I have finished the GDI backbuffer renderer and the whole GUI (couple of more things to adjust) but i am very near to completion. The only big obstacles that last are ball to ball collision (but i can fix this on my own) but the biggest problem of them all is the bouncing of the balls. What happens is that i throw a ball and it really falls, but once it bounces it will bounce higher than the point were i released it??? the funny thing is, it only happens if below a certain height. This part is the physics code: (If you need any more code or explanation, please ask, but i would greatly appreciate it if you guys could have a look at my code.)
#void RunPhysics(OPTIONS &o, vector<BALL*> &b)
{
UINT simspeed = o.iSimSpeed;
DOUBLE DT; //Delta T
BOOL bounce; //for playing sound
DT= 1/o.REFRESH;
for(UINT i=0; i<b.size(); i++)
{
for(UINT k=0; k<simspeed; k++)
{
bounce=false;
//handle the X bounce
if( b.at(i)->rBall.left <= 0 && b.at(i)->dVelocityX < 0 ) //ball bounces against the left wall
{
b.at(i)->dVelocityX = b.at(i)->dVelocityX * -1 * b.at(i)->dBounceCof;
bounce=true;
}
else if( b.at(i)->rBall.right >= SCREEN_WIDTH && b.at(i)->dVelocityX > 0) //ball bounces against the right wall
{
b.at(i)->dVelocityX = b.at(i)->dVelocityX * -1 * b.at(i)->dBounceCof;
bounce=true;
}
//handle the Y bounce
if( b.at(i)->rBall.bottom >= SCREEN_HEIGHT && b.at(i)->dVelocityY > 0 ) //ball bounces against the left wall
{
//damping of the ball
if(b.at(i)->dVelocityY < 2+o.dGravity/o.REFRESH)
{
b.at(i)->dVelocityY = 0;
}
//decrease the Velocity of the ball according to the bouncecof
b.at(i)->dVelocityY = b.at(i)->dVelocityY * -1*b.at(i)->dBounceCof;
b.at(i)->dVelocityX = b.at(i)->dVelocityX * b.at(i)->dBounceCof;
bounce=true;
}
//gravity
b.at(i)->dVelocityY += (o.dGravity)/o.REFRESH;
b.at(i)->pOrigin.y += b.at(i)->dVelocityY + (1/2)*o.dGravity/o.REFRESH*DT*METER;
//METER IS DEFINED GLOBALLY AS 100 which is the amount of pixels in a meter
b.at(i)->pOrigin.x += b.at(i)->dVelocityX/o.REFRESH*METER;
b.at(i)->UpdateRect();
}
}
return;
}