OpenMP (at least 2.0) supports reduction for some simple operations, but not for max and min.
In the following example the reduction
clause is used to make a sum and a critical
section is used to update a shared variable using a thread-local one without conflicts.
#include <iostream>
#include <cmath>
int main()
{
double sum = 0;
uint64_t ii;
uint64_t maxii = 0;
uint64_t maxii_shared = 0;
#pragma omp parallel shared(maxii_shared) private(ii) firstprivate(maxii)
{
#pragma omp for reduction(+:sum) nowait
for(ii=0; ii<10000000000; ++ii)
{
sum += std::pow((double)ii, 2.0);
if(ii > maxii) maxii = ii;
}
#pragma omp critical
{
if(maxii > maxii_shared) maxii_shared = maxii;
}
}
std::cerr << "Sum: " << sum << " (" << maxii_shared << ")" << std::endl;
}
EDIT: a cleaner implementation:
#include <cmath>
#include <limits>
#include <vector>
#include <iostream>
#include <algorithm>
#include <tr1/random>
// sum the elements of v
double sum(const std::vector<double>& v)
{
double sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for(size_t ii=0; ii< v.size(); ++ii)
{
sum += v[ii];
}
return sum;
}
// extract the minimum of v
double min(const std::vector<double>& v)
{
double shared_min;
#pragma omp parallel
{
double min = std::numeric_limits<double>::max();
#pragma omp for nowait
for(size_t ii=0; ii<v.size(); ++ii)
{
min = std::min(v[ii], min);
}
#pragma omp critical
{
shared_min = std::min(shared_min, min);
}
}
return shared_min;
}
// generate a random vector and use sum and min functions.
int main()
{
using namespace std;
using namespace std::tr1;
std::tr1::mt19937 engine(time(0));
std::tr1::uniform_real<> unigen(-1000.0,1000.0);
std::tr1::variate_generator<std::tr1::mt19937,
std::tr1::uniform_real<> >gen(engine, unigen);
std::vector<double> random(1000000);
std::generate(random.begin(), random.end(), gen);
cout << "Sum: " << sum(random) << " Mean:" << sum(random)/random.size()
<< " Min:" << min(random) << endl;
}