Could you guys please tell me how I can make the following code more pythonic?
The code is correct. Full disclosure - it's problem 1b in Handout #4 of this machine learning course. I'm supposed to use newton's algorithm on the two data sets for fitting a logistic hypothesis. But they use matlab & I'm using scipy
Eg one question i have is the matrixes kept rounding to integers until I initialized one value to 0.0. Is there a better way?
Thanks
import os.path
import math
from numpy import matrix
from scipy.linalg import inv #, det, eig
x = matrix( '0.0;0;1' )
y = 11
grad = matrix( '0.0;0;0' )
hess = matrix('0.0,0,0;0,0,0;0,0,0')
theta = matrix( '0.0;0;0' )
# run until convergence=6or7
for i in range(1, 6):
#reset
grad = matrix( '0.0;0;0' )
hess = matrix('0.0,0,0;0,0,0;0,0,0')
xfile = open("q1x.dat", "r")
yfile = open("q1y.dat", "r")
#over whole set=99 items
for i in range(1, 100):
xline = xfile.readline()
s= xline.split(" ")
x[0] = float(s[1])
x[1] = float(s[2])
y = float(yfile.readline())
hypoth = 1/ (1+ math.exp(-(theta.transpose() * x)))
for j in range(0,3):
grad[j] = grad[j] + (y-hypoth)* x[j]
for k in range(0,3):
hess[j,k] = hess[j,k] - (hypoth *(1-hypoth)*x[j]*x[k])
theta = theta - inv(hess)*grad #update theta after construction
xfile.close()
yfile.close()
print "done"
print theta