I was reading about the Weighted slope one algorithm ( and more formally here (PDF)) which is supposed to take item ratings from different users and, given a user vector containing at least 1 rating and 1 missing value, predict the missing ratings.
I found a Python implementation of the algorithm, but I'm having a hard time porting it to R (which I'm more comfortable with). Below is my attempt. Any suggestions on how to make it work?
Thanks in advance, folks.
# take a 'training' set, tr.set and a vector with some missing ratings, d
pred=function(tr.set,d) {
tr.set=rbind(tr.set,d)
n.items=ncol(tr.set)
# tally frequencies to use as weights
freqs=sapply(1:n.items, function(i) {
unlist(lapply(1:n.items, function(j) {
sum(!(i==j)&!is.na(tr.set[,i])&!is.na(tr.set[,j])) })) })
# estimate product-by-product mean differences in ratings
diffs=array(NA, dim=c(n.items,n.items))
diffs=sapply(1:n.items, function(i) {
unlist(lapply(1:n.items, function(j) {
diffs[j,i]=mean(tr.set[,i]-tr.set[,j],na.rm=T) })) })
# create an output vector with NAs for all the items the user has already rated
pred.out=as.numeric(is.na(d))
pred.out[!is.na(d)]=NA
a=which(!is.na(pred.out))
b=which(is.na(pred.out))
# calculated the weighted slope one estimate
pred.out[a]=sapply(a, function(i) {
sum(unlist(lapply(b,function (j) {
sum((d[j]+diffs[j,i])*freqs[j,i])/rowSums(freqs)[i] }))) })
names(pred.out)=colnames(tr.set)
return(pred.out) }
# end function
# test, using example from [3]
alice=c(squid=1.0, octopus=0.2, cuttlefish=0.5, nautilus=NA)
bob=c(squid=1.0, octopus=0.5, cuttlefish=NA, nautilus=0.2)
carole=c(squid=0.2, octopus=1.0, cuttlefish=0.4, nautilus=0.4)
dave=c(squid=NA, octopus=0.4, cuttlefish=0.9, nautilus=0.5)
tr.set2=rbind(alice,bob,carole,dave)
lucy2=c(squid=0.4, octopus=NA, cuttlefish=NA, nautilus=NA)
pred(tr.set2,lucy2)
# not correct
# correct(?): {'nautilus': 0.10, 'octopus': 0.23, 'cuttlefish': 0.25}