"what right has R as a stand-alone language and environment"
That's an odd phrasing, I think. At the very least, the question ignores history. These things never come down to what's available today. R has been around since the early-mid 1990s with a wealth of statistical computing facilities. Can you point to comparable Python libraries from around that time? The way these things work, as I'm sure you know, once anything gets some mindshare, it gets harder to give up or displace. Just because Python can do a lot of these things now with scipy packages, etc, isn't going to cause R programmers to jump ship.
But, I'm not convinved Python can do a lot of the statistical computing work with the same effort. For example, poke around:
Can you do some of the regression models, mixed effects, longitudinal analysis, etc in Python with the same ease?
That said, for matrix computing and such, I'd go straight for Python/NumPy. And I also prefer Python the programming language and the wealth of general purpose and specialized (GUI, web, etc) libraries it offers. I do wish the statistics community had discovered Python before writing their own thing. :-) But Python just didn't have as much of a mindshare at that time -- I think Perl was the rage back then.
EDIT: @eliben: I'm speculating here, but I'll take a crack at answering your comment. Sometime in the 1990s, statistical computing folks, especially those who'd already been exposed to S, learned about the open source variant of S, R. Many of these folks were adventurous graduate students, not ingrained in the ways of SAS and the like. Sometime in the late 90s and early 2000s, they became full blown professors with a captive audience of their own students, and chose to spread the R gospel. This narrative would account for at least a super-linear or exponential increase in the R users, which you might see.
Keep in mind that we're not just talking about statistics departments. The people who benefit from statistical computing includes Ecologists, Linguists, Biologists, Astronomers, Econometricians, etc, etc, etc. Basically, any type of experimental scientist or data analyst. If one wanted to change this state of affairs, one would be advised to develop useful Python libraries for the graduate students of today. I don't actually claim any of this as fact though. Just a guess. :-)
As an aside, I think it's interesting that the statistical NLP and Machine Learning folk have gravitated toward Python.
Here' another theory: because statistics is the new sexy. :-)