srand(time(null));
printf("%d", rand());
Gives a high-range random number (0-32000ish), but I only need about 0-63 or 0-127, though I'm not sure how to go about it. Any help?
srand(time(null));
printf("%d", rand());
Gives a high-range random number (0-32000ish), but I only need about 0-63 or 0-127, though I'm not sure how to go about it. Any help?
If you don't overly care about the 'randomness' of the low-order bits, just rand() % HI_VAL.
Also:
(double)rand() / (double)RAND_MAX; // lazy way to get [0.0, 1.0)
The naive way to do it is:
int myRand = rand() % 66; // for 0-65
This will likely be a very slightly non-uniform distribution (depending on your maximum value), but it's pretty close.
To explain why it's not quite uniform, consider this very simplified example:
Suppose RAND_MAX is 4 and you want a number from 0-2. The possible values you can get are shown in this table:
rand() | rand() % 3
---------+------------
0 | 0
1 | 1
2 | 2
3 | 0
See the problem? If your maximum value is not an even divisor of RAND_MAX, you'll be more likely to choose small values. However, since RAND_MAX is generally 32767, the bias is likely to be small enough to get away with for most purposes.
There are various ways to get around this problem; see here for an explanation of how Java's Random
handles it.
rand() will return numbers between 0 and RAND_MAX, which is at least 32767.
If you want to get a number within a range, you can just use modulo.
int value = rand() % 66; // 0-65
For more accuracy, check out this article. It discusses why modulo is not necessarily good (bad distributions, particularly on the high end), and provides various options.
rand() % number_of_numbers + minimum_number
So, for 0-65:
rand() % 66 + 0
(obviously you can leave the 0 off, but it's there for completeness).
Note that this will bias the randomness slightly, but probably not anything to be concerned about if you're not doing something particularly sensitive.
Updated to not use a #define
double RAND(double min, double max)
{
return (double)rand()/(double)RAND_MAX * (max - min) + min;
}
Or you can use this:
rand() / RAND_MAX * 65
But I'm not sure if it's the most random or fastest of all the answers here.
Taking the modulo of the result, as the other posters have asserted will give you something that's nearly random, but not perfectly so.
Consider this extreme example, suppose you wanted to simulate a coin toss, returning either 0 or 1. You might do this:
isHeads = ( rand() % 2 ) == 1;
Looks harmless enough, right? Suppose that RAND_MAX is only 3. It's much higher of course, but the point here is that there's a bias when you use a modulus that doesn't evenly divide RAND_MAX. If you want high quality random numbers, you're going to have a problem.
Consider my example. The possible outcomes are:
rand() freq. rand() % 2
0 1/3 0
1 1/3 1
2 1/3 0
Hence, "tails" will happen twice as often as "heads"!
Mr. Atwood discusses this matter in this Coding Horror Article
I think the following does it semi right. It's been awhile since I've touched C. The idea is to use division since modulus doesn't always give random results. I added 1 to RAND_MAX since there are that many possible values coming from rand including 0. And since the range is also 0 inclusive, I added 1 there too. I think the math is arranged correctly avoid integer math problems.
#define MK_DIVISOR(max) ((int)((unsigned int)RAND_MAX+1/(max+1)))
num = rand()/MK_DIVISOR(65);
check here
http://c-faq.com/lib/randrange.html
For any of these techniques, it's straightforward to shift the range, if necessary; numbers in the range [M, N] could be generated with something like
M + rand() / (RAND_MAX / (N - M + 1) + 1)
double scale = 1.0 / ((double) RAND_MAX + 1.0);
int min, max;
...
rval = (int)(rand() * scale * (max - min + 1) + min);
As others have noted, simply using a modulus will skew the probabilities for individual numbers so that smaller numbers are preferred.
A very ingenious and good solution to that problem is used in Java's java.util.Random
class:
public int nextInt(int n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
if ((n & -n) == n) // i.e., n is a power of 2
return (int)((n * (long)next(31)) >> 31);
int bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n-1) < 0);
return val;
}
It took me a while to understand why it works and I leave that as an exercise for the reader but it's a pretty concise solution which will ensure that numbers have equal probabilities.
The important part in that piece of code is the condition for the while
loop, which rejects numbers that fall in the range of numbers which otherwise would result in an uneven distribution.
if you care about the quality of your random numbers don't use rand()
use some other prng like http://en.wikipedia.org/wiki/Mersenne_twister or one of the other high quality prng's out there
then just go with the modulus.